## MATH 271, Quiz 4

Due November $13^{\text {th }}$ at the end of class

Instructions You are allowed a textbook, homework, notes, worksheets, material on our Canvas page, but no other online resources (including calculators or WolframAlpha) for this quiz. Do not discuss any problem any other person. All of your solutions should be easily identifiable and supporting work must be shown. Ambiguous or illegible answers will not be counted as correct.

## THERE ARE 4 PROBLEMS AND 2 BONUS PROBLEMS.

Problem 1. Consider the matrix

$$
[A]=\left(\begin{array}{ll}
1 & 3 \\
3 & 0
\end{array}\right)
$$

(a) (3 pts.) Show that for any arbitrary vectors $\overrightarrow{\boldsymbol{u}}, \overrightarrow{\boldsymbol{v}} \in \mathbb{R}^{2}$ that

$$
([A] \overrightarrow{\boldsymbol{u}}) \cdot \overrightarrow{\boldsymbol{v}}=\overrightarrow{\boldsymbol{u}} \cdot([A] \overrightarrow{\boldsymbol{v}})
$$

(b) (2 pts.) Is $[A]$ hermitian? Explain.

Problem 2. For the following decide whether the statement is true or false. For full credit, provide an adequate explanation for your answer.
(a) (2 pts.) Every matrix is diagonalizable.
(b) (2 pts.) Every $n \times n$ matrix has $n$ complex eigenvalues.
(c) (2 pts.) The trace satisfies $\operatorname{tr}([A][B][C])=\operatorname{tr}([A]) \operatorname{tr}([B]) \operatorname{tr}([C])$.
(d) (2 pts.) Similar matrices have the same eigenvalues.

Problem 3. Consider the matrix

$$
[A]=\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right)
$$

(a) (2 pts.) Argue why the eigenvalues of $[A]$ must be real.
(b) ( 2 pts.) Find the eigenvalues of $[A]$.
(c) (2 pts.) Find the eigenvectors of $[A]$.
(d) (2 pts.) Show that the eigenvectors of $[A]$ are orthogonal.
(e) (2 pts.) Explain how you can use the eigenvectors of $[A]$ to transform $[A]$ into a similar diagonal matrix.

Problem 4. ( $\mathbf{3} \mathbf{p t s . )}$ Let $A$ be a linear transformation and let $\overrightarrow{\boldsymbol{e}}_{1}, \ldots, \overrightarrow{\boldsymbol{e}}_{k}$ be eigenvectors all with corresponding eigenvalue $\lambda$. Show that any vector in the span of $\left\{\overrightarrow{\boldsymbol{e}}_{1}, \ldots, \overrightarrow{\boldsymbol{e}}_{k}\right\}$ is also an eigenvector with eigenvalue $\lambda$.

Problem 5. (Bonus $\mathbf{3}$ pts.) Consider the following set $\{1,-1, \mathbf{i},-\mathbf{i}, \mathbf{j},-\mathbf{j}, \mathbf{k},-\mathbf{k}\}$ with the relationships

$$
\mathbf{i}^{2}=\mathbf{j}^{2}=\mathbf{k}^{2}=\mathbf{i j k}=-1,
$$

where 1 and -1 behave as expected. Show that this set with multiplication is a group (called the quaternion group).

Problem 6. (Bonus 3 pts.) Consider the group of $n \times n$ invertible matrices denoted by GL $(n)$. Explain why $\mathrm{GL}(n)$ is a group when the product operation is given by matrix multiplication but it is NOT a group if we instead chose the operation to be addition.

