MATH 271, Quiz 2

Due March $19^{\text {TH }}$ at the end of class

Instructions You are allowed a textbook, homework, notes, worksheets, material on our Canvas page, but no other online resources (including calculators or WolframAlpha) for this quiz. Do not discuss any problem any other person. All of your solutions should be easily identifiable and supporting work must be shown. Ambiguous or illegible answers will not be counted as correct.

THERE ARE 7 TOTAL PROBLEMS.

Problem 1. For the following, say whether the statement is true or false. For full credit, justify your answer with an explanation.
(a) (2 pts.) A partial differential equation must always have initial conditions.
(b) (2 pts .) The Dirichlet boundary conditions for the heat equation specify a specific temperature at each point along the boundary of the domain.
(c) (2 pts.) The 1-dimensional wave equation

$$
\left(-\frac{\partial^{2}}{\partial x^{2}}+\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}\right) u(x, t)=0
$$

with $c>0$ will reach an equilibrium position as we let $t \rightarrow \infty$ regardless of the initial conditions $u(x, 0)$ and $\frac{\partial}{\partial t} u(x, 0)$.

Problem 2. Let us take a discrete set of points on a line like so

A discrete version of the 1-dimensional Poisson equation

$$
-k \frac{d^{2}}{d x^{2}} u(x)=f(x),
$$

can be written for each of the interior points as

$$
-k \frac{u_{j+1}-2 u_{j}+u_{j-1}}{\delta x^{2}}=f\left(x_{j}\right)
$$

Here, δx is the distance between each particle, $k \neq 0$ is the strength of a spring connecting each particle, u_{j} describes the height of the particle above the x-axis, and $f\left(x_{j}\right)$ is the force acting on particle j.
(a) (2 pts.) True or false. The force on particle j does not affect particle $j+2$. Explain.
(b) (2 pts.) Neumann boundary conditions prescribe values for

$$
\frac{\partial}{\partial x} u(0) \quad \text { and } \quad \frac{\partial}{\partial x} u(1) .
$$

Explain why in this approximation we would instead prescribe a value for

$$
\frac{u_{1}-u_{2}}{\delta x} \quad \text { and } \quad \frac{u_{n}-u_{n-1}}{\delta x} .
$$

Hint: think about what happens as you consider the continuum limit (i.e., $n \rightarrow \infty$).
(c) (2 pts.) In general, what are the equations for the boundary particles 1 and n ?

Problem 3. (3 pts.) Consider the Helmholtz equation

$$
\Delta f=-k^{2} f
$$

where Δ is the Laplacian. Suppose that f_{1} is a solution with $k=k_{1}$ and f_{2} is a solution with $k=k_{2}$ and suppose further that $k_{1} \neq k_{2}$. Show that

$$
f=f_{1}+f_{2}
$$

is not a solution to the Helmholtz equation.

Problem 4. (BONUS 2 pts.) Argue that the previous problem would yield a solution if $k_{1}=k_{2}$.

Problem 5. Consider the 1-dimensional heat equation.
(a) (2 pts.) Let the domain be $\Omega=[0,1]$ with the boundary conditions

$$
\frac{\partial}{\partial x} u(0, t)=0 \quad \text { and } \frac{\partial}{\partial x} u(1, t)=0 .
$$

Show that $u_{n}(x, t)=A_{n} e^{n^{2} \pi^{2} t} \cos (n \pi x)$ satisfies the boundary conditions for any integer n.
(b) (2 pts.) Using your solution in (a), find the particular solution that satisfies the initial condition $u(x, 0)=13 \cos (18 \pi x)$.

Problem 6. (3 pts.) Find the solution to the wave equation on \mathbb{R} with $c=1$ using d'Alembert's formula with the initial conditions

$$
u(x, 0)=0 \quad \text { and } \quad \frac{\partial}{\partial t} u(x, 0)=1 .
$$

Problem 7. (BONUS 3 pts.) Let $u(x, t)$ be a solution to the heat equation with time dependent heat sources given by $f(x, t)$. That is, $u(x, t)$ solves the equation

$$
\frac{\partial}{\partial t} u(x, t)=k \frac{\partial^{2}}{\partial x^{2}} u(x, t)+f(x, t)
$$

Show that equilibrium can only be achieved if $\lim _{t \rightarrow \infty} f(x, t)=g(x)$.

