MATH 272, Homework 9, Solutions

Problem 1. Let $\Psi(x)$ be a complex function with domain $[0, L]$. Show that multiplication by a global phase $e^{i \theta}$ does not affect the norm of $\Psi(x)$ under the Hermitian (integral) inner product. In more generality, this shows that you cannot fully determine a quantum state there will always be an undetermined phase.

Solution 1. We take the following

$$
\begin{aligned}
\left\|e^{i \theta} \Psi\right\|^{2}=\left\langle e^{i \theta} \Psi, e^{i \theta} \Psi\right\rangle & =\int_{0}^{L}\left(e^{i \theta} \Psi(x)\right)\left(e^{i \theta} \Psi(x)\right)^{*} d x \\
& =\int_{0}^{L} e^{i \theta} e^{-i \theta} \Psi(x) \Psi^{*}(x) d x \\
& =\int_{0}^{L} \Psi(x) \Psi^{*}(x) d x \\
& =\langle\Psi, \Psi\rangle \\
& =\|\Psi\|^{2}
\end{aligned}
$$

Problem 2. Consider the real function $f(x)=1$ on the domain $[0, L]$.
(a) What is the norm of $f,\|f\|$?
(b) Normalize $f(x)$.
(c) Find a nonzero normalized polynomial of degree ≤ 1 that is orthogonal to $f(x)$.

Solution 2.

(a) We compute the norm by

$$
\begin{aligned}
\|f\|=\sqrt{\langle f, f\rangle} & =\sqrt{\int_{0}^{L} f^{2}(x) d x} \\
& =\sqrt{\int_{0}^{L} 1 d x} \\
& =\sqrt{L}
\end{aligned}
$$

(b) We can normalize f by letting c be some constant and forcing

$$
1=\|c f\|=c^{2} L
$$

Thus $c=\frac{1}{\sqrt{L}}$. We can write the normalized function as

$$
h(x)=\frac{1}{\sqrt{L}} .
$$

(c) Consider an arbitrary polynomial of degree ≤ 1 by putting $g(x)=a x+b$. Now, we want this polynomial to be orthogonal to $f(x)$ which means that we want

$$
\langle f, g\rangle=0 .
$$

Let us compute the above

$$
\begin{aligned}
\langle f, g\rangle & =\int_{0}^{L} f(x) g(x) d x \\
& =\int_{0}^{L} a x+b d x \\
& =\frac{a L^{2}}{2}+b L \\
& =\frac{1}{2} L(a L+2 b) .
\end{aligned}
$$

Hence, we can solve for a by

$$
0=a L+2 b \quad \Longrightarrow \quad a=-\frac{2 b}{L}
$$

Now, $g(x)=-\frac{2 b}{L} x+b$. But, we require $g(x)$ to be normalized as well hence

$$
\begin{aligned}
1=\langle g, g\rangle & =\int_{0}^{L}\left(-\frac{2 b}{L} x+b\right)^{2} d x \\
& =\frac{b^{2} L}{3}
\end{aligned}
$$

Solving for b, we find $b=\sqrt{\frac{3}{L}}$ and hence we have that

$$
g(x)=-2 \sqrt{\frac{3}{L^{3}}} x+\sqrt{\frac{3}{L}} .
$$

Problem 3. A wavefunction $\Psi(x)$ for a particle in the 1-dimensional box $[0, L]$ could be written as a superposition of normalized states

$$
\psi_{n}(x)=\sqrt{\frac{2}{L}} \sin \left(\frac{n \pi x}{L}\right) .
$$

That is,

$$
\Psi(x)=\sum_{n=1}^{\infty} a_{n} \psi_{n}(x)
$$

for some choice of the coefficients a_{n}.
(a) Let $a_{n}=\frac{\sqrt{6}}{n \pi}$. Show that $\Psi(x)$ is normalized. Hint: first, use orthogonality of the states $\psi_{n}(x)$ to your advantage. Then you will need to know what an infinite series evaluates to. Use a tool like WolframAlpha to evaluate this series.
(b) Note that we can approximate $\Psi(x)$ by taking a finite sum approximation up to some chosen N by

$$
\Psi(x) \approx \sum_{n=1}^{N} a_{n} \psi_{n}(x)
$$

Plot the approximation of $\Psi(x)$ for $N=1,5,50,100$. Hint: you can modify my Desmos examples.

Solution 3. (a) To see that $\Psi(x)$ is normalized we take

$$
\begin{array}{rlr}
\langle\Psi, \Psi\rangle & =\left\langle\sum_{n=1}^{\infty} a_{n} \psi_{n}(x), \sum_{n=1}^{\infty} a_{n} \psi_{n}(x)\right\rangle \\
& =\sum_{n=1}^{\infty}\left\|a_{n}\right\|^{2}\left\langle\psi_{n}, \psi_{n}\right\rangle \quad \text { by orthogonality of the states } \\
& =\sum_{n=1}^{\infty} \frac{6}{n^{2} \pi^{2}} \\
& =\frac{6}{\pi^{2}} \sum_{n=1}^{\infty} \frac{1}{n^{2}} \\
& =\frac{6}{\pi^{2}} \zeta(2) \\
& =1
\end{array}
$$

Note the sum above is the Zeta function we saw in Math 271 and $\zeta(2)$ is a well-known value (that you can find by computing the above sum in, for example, WolframAlpha.
(b)

(a) The approximation to $\Psi(x)$ with $N=1$.

(c) The approximation to $\Psi(x)$ with $N=50$.

(b) The approximation to $\Psi(x)$ with $N=5$.

(d) The approximation to $\Psi(x)$ with $N=100$.

Problem 4. When making a measurement of the position of the particle, we will use the position operator x. This is the same as the variable x in the original problem statement, but it is also an operator!
(a) Show that the position operator x is Hermitian.
(b) We can compute the expected position of a particle with wavefunction $\Psi(x)$ by computing

$$
\mathbb{E}[x]=\langle\Psi, x \Psi\rangle .
$$

Let $\Psi(x)=\frac{1}{\sqrt{2}} \psi_{1}(x)+\frac{1}{\sqrt{2}} \psi_{2}(x)$, compute $\mathbb{E}[x]$. This value $\mathbb{E}[x]$ tells you where we expect to find the particle on average.
(c) In fact, any real valued function $V(x)$ of the position operator x is also Hermitian. Make a quick argument on why this must be true.
Solution 4. (a) Let $\Psi(x)$ and $\Phi(x)$ be arbitrary functions. Then we have

$$
\begin{array}{rlr}
\langle x \Psi, \Phi\rangle & =\int_{0}^{L} x \Psi(x) \Phi^{*}(x) d x & \\
& =\int_{0}^{L} \Psi(x)(x \Phi(x))^{*} d x & \text { since } x \text { is real valued } \\
& =\langle\Psi, x \Phi\rangle &
\end{array}
$$

Thus we have that the position operator is Hermitian.
(b) We can compute the expected value by

$$
\begin{aligned}
\mathbb{E}[x]=\langle\Psi, x \Psi\rangle & =\int_{0}^{L} \Psi(x) x^{*} \Psi(x) d x \\
& =\int_{0}^{L} x\left(\frac{1}{\sqrt{2}} \psi_{1}(x)+\frac{1}{\sqrt{2}} \psi_{2}(x)\right)^{2} d x \\
& =\int_{0}^{L} x\left(\frac{1}{2} \psi_{1}^{2}(x)+\psi_{1}(x) \psi_{2}(x)+\frac{1}{2} \psi_{2}^{2}(x)\right) d x .
\end{aligned}
$$

This can be split into three separate integrals. First,

$$
\int_{0}^{L} \frac{x}{2} \psi_{1}^{2}(x) d x=\int_{0}^{L} \frac{x}{L} \sin ^{2}\left(\frac{\pi x}{L}\right) d x=\frac{L}{4}
$$

Second,

$$
\int_{0}^{L} x \psi_{1}(x) \psi_{2}(x) d x=\int_{0}^{L} \frac{2 x}{L} \sin \left(\frac{\pi x}{L}\right) \sin \left(\frac{2 \pi x}{L}\right) d x=-\frac{16 L}{9 \pi^{2}} .
$$

Finally,

$$
\int_{0}^{L} x \psi_{2}^{2}(x) d x=\int_{0}^{L} \frac{x}{L} \sin ^{2}\left(\frac{2 \pi x}{L}\right) d x=\frac{L}{4}
$$

Thus, we can add these all together to get

$$
\mathbb{E}[x]=\frac{L}{2}-\frac{16 L}{9 \pi^{2}} \approx .32 L
$$

(c) If $V(x)$ is real valued, then $V^{*}(x)=V(x)$. Hence, we have

$$
\langle V \Psi, \Phi\rangle=\int_{0}^{L} V(x) \Psi(x) \Phi^{*}(x) d x=\int_{0}^{L} \Psi(x)(V(x) \Phi(x))^{*} d x=\langle\Psi, V \Phi\rangle
$$

Problem 5. Another related operator is the momentum operator $p=-i \hbar \frac{d}{d x}$. Using integration by parts, show that this operator is Hermitian.

Solution 5. We have

$$
\begin{aligned}
\langle p \Psi, \Phi\rangle & =\int_{0}^{L}\left(-i \hbar \frac{d \Psi}{d x}\right) \Phi^{*}(x) d x \\
& =-\left.i \hbar \Psi(x) \Phi^{*}(x)\right|_{0} ^{L}+\int_{0}^{L} i \hbar \Psi(x) \frac{d \Phi^{*}}{d x} d x \quad \text { by integration by parts. }
\end{aligned}
$$

Note now that the boundary conditions require both $\Psi(0)=\Psi(L)=0$ and $\Phi(0)=\Phi(L)=0$, since we are working over the space of solutions to the particle in the 1-dimensional box. Hence, we have

$$
\begin{aligned}
\langle p \Psi, \Phi\rangle & =\int_{0}^{L} i \hbar \Psi(x) \frac{d \Phi^{*}}{d x} d x \\
& =\int_{0}^{L} \Psi(x)\left(-i \hbar \frac{d \Phi}{d x}\right)^{*} d x \\
& =\langle\Psi, p \Phi\rangle
\end{aligned}
$$

Thus, p is Hermitian.

Problem 6. We can always take products, sums, and scalar multiples of operators to build new operators. For example, in classical physics, we have the kinetic energy

$$
T=\frac{1}{2} m \overrightarrow{\boldsymbol{v}} \cdot \overrightarrow{\boldsymbol{v}}
$$

where $\boldsymbol{\vec { v }}$ is the velocity. In 1 -dimension, this reduces to the familiar $\frac{1}{2} m v^{2}$. However, we can also rewrite this 1-dimensional equation using the momentum $p=m v$ which gives us the kinetic energy

$$
T=\frac{p^{2}}{2 m}
$$

Hence, we can define the quantum kinetic energy operator

$$
T=\frac{p^{2}}{2 m}
$$

(a) Show that $T=\frac{-\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}$.
(b) Make a quick argument as to why this kinetic energy operator T is Hermitian.
(c) Again, letting $\Psi(x)=\frac{1}{\sqrt{2}} \psi_{1}(x)+\frac{1}{\sqrt{2}} \psi_{2}(x)$, compute $\mathbb{E}[T]$. The expected value $\mathbb{E}[T]$ tells us what the observed energy will be on average. Yet, any time we measure a system we will find that energy must be one of the energy eigenvalues. Thus, for this wave function, this expected value should be the average between E_{1} and E_{2} which means that half the time we will measure the energy to be E_{1} and half the time it will be E_{2}.

Solution 6.

(a) We have $p=-i \hbar \frac{d}{d x}$. Then, we construct T by

$$
\begin{aligned}
T=\frac{p^{2}}{2 m} & =\frac{\left(-i \hbar \frac{d}{d x}\right)^{2}}{2 m} \\
& =\frac{-\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}
\end{aligned}
$$

(b) We have

$$
\begin{array}{rlr}
\langle T \Psi, \Phi\rangle & =\left\langle\frac{p^{2}}{2 m} \Psi, \Phi\right\rangle & \\
& =\left\langle p^{2} \Psi, \frac{1}{2 m} \Phi\right\rangle & \text { since } \frac{1}{2 m} \text { is a real constant } \\
& =\left\langle p \Psi, \frac{p}{2 m} \Phi\right\rangle & \text { since } p \text { is Hermitian } \\
& =\left\langle\Psi, \frac{p^{2}}{2 m} \Phi\right\rangle & \\
& =\langle\Psi, T \Phi\rangle . &
\end{array}
$$

Thus, T is Hermitian.
(c) Now, most of the work has been done for us, and the rest here will be taken care of by orthogonality. We take

$$
\begin{aligned}
\langle\Psi, T \Psi\rangle & =\left\langle\frac{1}{\sqrt{2}} \psi_{1}+\frac{1}{\sqrt{2}} \psi_{2}, \frac{E_{1}}{\sqrt{2}} \psi_{1}+\frac{E_{2}}{\sqrt{2}} \psi_{2}\right\rangle \\
& =\frac{E_{1}}{2}\left\langle\psi_{1}, \psi_{1}\right\rangle+\frac{E_{1}}{2}\left\langle\psi_{2}, \psi_{1}\right\rangle+\frac{E_{2}}{2}\left\langle\psi_{1}, \psi_{2}\right\rangle+\frac{E_{2}}{2}\left\langle\psi_{2}, \psi_{2}\right\rangle \\
& =\frac{E_{1}+E_{2}}{2}
\end{aligned}
$$

Problem 7. If we are given a potential (energy) $V(x)$ and the kinetic energy T, we can take their sum and form the total energy $T+V(x)$ which we call the Hamiltonian. Thus, in the quantum realm, we create the Hamiltonian operator H by

$$
H=T+V(x) .
$$

(a) Show that the Hamiltonian operator is Hermitian. Hint: you have already done the necessary work for this. You just need to combine it and show a few steps here.
(b) The spectrum of the Hamiltonian tells us the possible energy eigenvalues of a quantum system. Thus, we can compute the spectrum (in this case) by solving the eigenvalue equation

$$
H \Psi(x)=E \Psi(x)
$$

Explain why the spectrum of H is discrete for the particle in the box problem. Hint: We have done this exact problem in the notes from Math 271. Feel free to use that!
Solution 7. (a) We know that both T and $V(x)$ are Hermitian. Thus, we take

$$
\langle(T+V) \Psi, \Phi\rangle=\langle T \Psi, \Phi\rangle+\langle V \Psi, \Phi\rangle=\langle\Psi, T \Phi\rangle+\langle\Psi, V \Phi\rangle=\langle\Psi,(T+V) \Phi\rangle
$$

(b) Since $V(x)=0$ in $[0, L]$, we have that

$$
H=T=-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}} .
$$

Hence, we are solving the equation

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}} \Psi(x)=E \Psi(x)
$$

Let $\omega^{2}=\frac{2 m E}{\hbar^{2}}$, and we have

$$
\Psi^{\prime \prime}(x)+\omega^{2} \Psi(x)=0,
$$

which is the harmonic oscillator equation. Thus, our solution is

$$
\Psi(x)=C_{1} e^{i \omega x}+C_{2} e^{-i \omega x} .
$$

Now, if we apply the boundary conditions, we have

$$
0=\Psi(0)=C_{1}+C_{2},
$$

thus $C_{1}=-C_{2}$. By Euler's formula, we can take

$$
C_{1} e^{i \omega x}-C_{1} e^{-i \omega x}=C \sin (\omega x) .
$$

Now, our other boundary condition states

$$
0=\Psi(L)=C \sin (\omega L)
$$

Thus we must have $\omega=\frac{n \pi}{L}$ for an integer n. Now, this means

$$
\frac{2 m E}{\hbar^{2}}=\omega^{2}=\frac{n^{2} \pi^{2}}{L^{2}}
$$

and we can solve for E to get

$$
E=\frac{n^{2} \pi^{2} \hbar^{2}}{2 m L^{2}}
$$

which shows that the spectrum of H is discrete.

