
MATH 272, Homework 5, Solutions.

Problem 1. Let ~V be a vector field in the plane R2 defined by

~V (x, y) =

(
1
2
x− y
x+ 1

2
y

)
,

and let ~x(t) =

(
e

1
2
t(−c1 sin(t) + c2 cos(t))

e
1
2
t(c1 cos(t) + c2 sin(t))

)
for t ∈ [0, π] where c1 and c2 are yet undeter-

mined constants.

(a) Show that a flow of ~V yields a linear system of equations.

(b) Show that ~x(t) is a flow of the vector field ~V .

(c) Let ~x(0) =

(
1
0

)
. Determine the particular solution to the initial value problem.

(d) [MATLAB] Plot the ~V and your particular solution ~x simultaneously by modifying

vector_field_2d.m

and

curve.m

Then enter the following into the command window

vector_field_2d

followed by

curve

and finally to get the correct view enter

view(0,90)

Choose good bounds for your plot so that the whole curve is visible.

Solution 1.
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(a) A flow of ~V is given by

~̇x(t) = ~V (~x)

whereas a linear system of equations assumes the form

~̇x(t) = [A(t)]~x,

so we should attempt to find a 2× 2 matrix [A(t)]. Take

[A(t)] =

(
a11(t) a12(t)
a21(t) a22(t)

)
,

then

[A(t)]~x =

(
a11(t)x(t) + a12(t)x(t)
a21(t)x(t) + a22(t)x(t)

)
.

Thus, we can take

a11(t) =
1

2
a12(t) = −1

a21(t) = 1

a22(t) =
1

2
.

Thus, a flow defined by ~V is linear.

(b) We have

~̇x =

(
−e 1

2
t
((

1
2
c1 + c2

)
sin(t) +

(
c1 − 1

2
c2
)

cos(t)
)

e
1
2
t
((
−c1 + 1

2
c2
)

sin(t) +
(
1
2
c1 + c2

)
cos(t)

))
and likewise

~V (~x) =

(
−e 1

2
t
((

1
2
c1 + c2

)
sin(t) +

(
c1 − 1

2
c2
)

cos(t)
)

e
1
2
t
((
−c1 + 1

2
c2
)

sin(t) +
(
1
2
c1 + c2

)
cos(t)

)) .
Thus, ~x is a flow of ~V .

(c) We have (
1
0

)
= ~x(0) =

(
c2
c1

)
.

Thus, c1 = 0 and c2 = 1 and we have

~x(t) =

(
e

1
t cos(t)

e
1
t sin(t)

)
.
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(d) Finally, we can plot this particular solution ~x overlayed on the vector field ~V .
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Problem 2. Let us consider the discrete heat equation for n equally spaced particles on a
line segment for which we have the following picture

x1 x2 x3 x4 xn−1 xn

k1 k2 k3 kn−1

Let uj(t) := u(xj, t) denote the temperature of particle j at time t, let kj be the thermal
transport coefficient between particles j and j + 1, and let fj(t) = f(xj, t) be the thermal
energy source on particle j.

(a) For the boundary particles x1 and xn, we have

u̇1 = −k1u1 + k1u2 + f1 and u̇n = −knun + kn−1un−1 + fn,

which correspond to Neumann type boundary conditions. Explain each term in the above
equations.

(b) If we attached x1 to xn with a material with a thermal transport coefficent of k0 the
above equations would need modification. Write these new equations. These are the
periodic boundary conditions.

(c) Explain why periodic boundary conditions are the same as working with a circular
domain.

(d) If we force u1 and un to be constant, what will the equations for the boundary particles
be? These would be the Dirichlet type boundary conditions.

(e) For the interior particles, we have the relationship

u̇j = −kj−1uj − kjuj + kj−1uj−1 + kjuj+1 + fj for j = 2, . . . , n− 1.

Explain what each term describes in the above equation.

(f) In the limit as n → ∞, we then have that k is described as a function of position, x.
The source free heat equation then reads

∂

∂t
u(x, t) =

∂

∂x

(
k(x)

∂

∂x
u(x, t)

)
+ f(x, t).

Explain how this equation differs from the equation

∂

∂t
u(x, t) = k(x)

∂2

∂x2
u(x, t) + f(x, t).

Solution 2.
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(a) Let us concentrate on the two terms that appear in the first equation

u̇1 = −k1u1︸ ︷︷ ︸
1

+k1u2︸ ︷︷ ︸
2

+f1︸︷︷︸
5

.

The rate of change of the temperature of particle 1, u̇1, depends on these three terms.
For term 1, this corresponds to thermal energy leaving particle 1 at a rate given by
the thermal transport coefficient k1 and proportional to the temperature of particle 1,
u1. Term 2 is the thermal energy entering particle 1 given by particle 2 at a rate k1
proportional to the temperature of particle 2, u2. The rates here are all the same since
the two particles are connected by the same media. Thus, the rate of change of particle
1 can also be written as

u̇1 = k1(u2 − u1) + f1,

which is equivalent to Newton’s law of cooling with an additional heat source due to f1.
That is, the rate of change of temperature of a body is proportional to the difference
of the temperature of the body and its surroundings in the case where the source term
f1 = 0. Term 3, +f1, describes the rate of heat energy being added to particle 1. The
equation for particle n is completely analogous.

(b) The equations we have will need an additional term that corresponds to thermal trans-
port to the particle at the other end of the interval. The original terms remain. Thus,
we would have

u̇1 = −k1u1 +k1u2−k0u1 +k0un + f1 and u̇n = −knun +k1un−1−k0un +k0u1fn.

(c) The above equations go to show that we have added medium between particles 1 and 2
so that 1 and 2 are in thermal contact. Thus, it is sensible to realize that we have taken
this line of particles and attached endpoints to form a circle.

(d) The equations in this case are quite simple. We have

u̇1 = 0 and u̇n = 0.

Hence, we must also require that f1 = 0 and fn = 0.

(e) Let us isolate the terms in the equation

u̇j = −kj−1uj︸ ︷︷ ︸
1

−kjuj︸ ︷︷ ︸
2

+kj−1uj−1︸ ︷︷ ︸
3

+kjuj+1︸ ︷︷ ︸
4

+fj︸︷︷︸
5

.

Terms 1 and 2 are negative, which mean they correspond to thermal energy lost by
particle j. Indeed, thermal energy will be transported to particle j − 1 through the
medium with the thermal transport coefficient kj−1 and proportional to uj (term 1) and
thermal energy will transport to particle j + 1 via the media with kj and proportional
to uj (term 2). Terms 3 and 4 are positive, so they correspond to thermal energy gained
by particle j. Particle j receives thermal energy from particle j − 1 via kj−1uj−1 and
from particle j + 1 via kjuj+1. Finally, term 5 is again the rate of thermal energy being
added to particle j.
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(f) In the first equation, we have a product rule to apply to yield

∂

∂x

(
k(x)

∂

∂x
u(x, t)

)
=
dk

dx

∂u

∂x
+ k

∂2u

∂x2
.

Indeed, this means that there is an extra term when we compare to the second equation.
This term deals with the fact that the thermal transport medium itself can vary from
point to point, and the gradient of this adds additional changes the diffusion process.
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Problem 3. Consider the 1-dimensional homogeneous Laplace equation given by

∂2

∂x2
uE(x) = 0,

with the domain Ω as the unit interval on the x-axis. Take the Dirichlet boundary conditions
uE(0) = T0 and uE(L) = TL. Think of these values as the ambient temperature at the
endpoints of the rod. These temperatures are constant since the ambient environment is so
large.

(a) Find the particular solution to this Laplace equation.

(b) Suppose that v(x, t) is a solution to the 1-dimensional source free isotropic heat equation
with zero Dirichlet boundary values. Show that

u(x, t) = v(x, t) + uE(x),

is a solution to the 1-dimensional source free isotropic heat equation with Dirichlet
boundary values u(0, t) = T0 and u(L, t) = TL.

(c) From Problem 1, we know that limt→∞ v(x, t) = 0. Hence, show that the long time limit
of a solution to the source free heat equation yields a solution to the Laplace equation.

(d) Argue why the equilibrium temperature profile of a rod can be found without solving
the heat equation.

Solution 3.

(a) Note that we can integrate this equation twice to get a general solution

uE(x) = ax+ b.

Now, by matching boundary conditions, we have

T0 = uE(0) = b,

so b = T0. The other condition gives

TL = uE(L) = aL+ T0,

thus we have a = TL−T0
L

. This means our particular solution is

uE(L) =
TL − T0

L
x− T0.

(b) First, we need to see if u = v + uE is a solution to the PDE. If we plug this in, we have(
−k ∂

2

∂x2
+
∂

∂t

)
u =

(
−k ∂

2

∂x2
+
∂

∂t

)
(v + uE)

=

(
−k ∂

2

∂x2
+
∂

∂t

)
v(x, t) +

(
−k ∂

2

∂x2
+
∂

∂t

)
uE(x).
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Now, note that (
−k ∂

2

∂x2
+
∂

∂t

)
v(x, t) = 0,

since we stated v is a solution to this equation and note(
−k ∂

2

∂x2
+
∂

∂t

)
uE(x) = 0

since uE(x) doesn’t depend on t and uE(x) solves the Laplace equation.

Finally, we need to show that u = v + uE satisfies the boundary conditions. Since
v(0, t) = 0 = v(L, t) by our supposition, we have that u(0, t) = uE(0) = T0 and u(L, t) =
uE(L) = TL. Thus u(x, t) is indeed a solution to the boundary value problem.

(c) We can take
lim
t→∞

u(x, t) = lim
t→∞

(v(x, t) + uE(x)) = uE(x),

which shows that uE(x) is the equilibrium temperature profile. This is also the solution
to the Laplace equation!

(d) To find the equilibrium temperature profile, we just needed to solve the Laplace equation.
That was the argument we made in (c). The equilibrium does not depend on time, since
it is the result of waiting for t → ∞. So, determining this is a completely separate
problem if we wish it to be!
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Problem 4. Using intuition from the previous problem, explain how one could solve the
heat equation with a nonzero source term that only depends on x. In other words, how could
one try to solve (

−k ∂
2

∂x2
+
∂

∂t

)
u(x, t) = f(x), (1)

Solution 4. One could argue that the equilibrium solution uE(x) will solve the equation

−k ∂
2

∂x2
uE(x) = f(x),

since this mimics what we did in the earlier problem. This shows that when there are sources
of heat in the material, they will contribute to the equilibrium temperature profile. How so?
Take u(x, t) = v(x, t) + uE(x) as before, then(

−k ∂
2

∂x2
+
∂

∂t

)
u(x, t) = f(x)(

−k ∂
2

∂x2
+
∂

∂t

)
(v(x, t) + uE(x)) = f(x)(

−k ∂
2

∂x2
+
∂

∂t

)
v(x, t) +−k ∂

2

∂x2
uE(x) = f(x),

and since v(x, t) solves the 1d heat equation, are left with the above equation (eq. (1)).
Moreover, one should note that the boundary conditions must be handled by uE(x) as in
problem 3.
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Problem 5. Consider the 2-dimensional source free isotropic heat equation given by(
−k∆ +

∂

∂t

)
u(x, y, t) = 0,

with the domain Ω as the unit square in the xy-plane. Take as well the Dirichlet boundary
conditions u(x, y, t) = 0 for x and y on the boundary of Ω.

(a) Show that umn(x, y, t) = sin(mπx) sin(nπy)e−k(n
2+m2)π2t is a solution to the PDE and

Dirichlet boundary conditions for any non-negative integers m and n.

(b) Show that a linear combination of solutions umn and upq is also a solution.

(c) For m = n = 1 and k = 1, plot the solution for the values t = 0, t = 0.01, t = 0.1 and
t = 1. Explain what is physically happening as time moves forward.

(d) Explain what varying the value for the conductivity k does to the solution. Feel free to
use plots to support your hypothesis.

(e) Explain the mathematical reason why increasing m and n causes the solution to converge
to zero more quickly.

(f) Explain the physical reason why increasing m and n causes the solution to converge to
zero more quickly. Plots may help support your reasoning.

Solution 5.

(a) We can simply take the necessary derivatives to show that umn is a solution. We have

−k∆umn = −ke−k(m2+n2)π2t
(
−m2π2 sin(mπx) sin(nπy)− n2π2 sin(mπx) sin(nπy)

)
= k(m2 + n2)π2umn

Then we also have
∂

∂t
umn = −k(m2 + n2)π2umn.

Hence, if we add these two together we have

−k∆umn+
∂

∂t
umn = 0.

So umn(x, y, t) is a solution to the PDE for all m and n.

Now, as far as the boundary conditions go, the boundary to Ω is broken into four pieces

x ∈ [0, 1] & y = 0

x ∈ [0, 1] & y = 1

y ∈ [0, 1] & x = 0

y ∈ [0, 1] & x = 1.

Note that when x = 0 or x = 1, we have sin(mπx) = 0 since m is an integer. Similarly
we have for y = 0 or y = 1 that sin(nπy) = 0. Thus, umn = 0 along the boundary.

10



(b) Take u = αmnumn + αpqupq. Then(
−k∆ +

∂

∂t

)
u =

(
−k∆ +

∂

∂t

)
(αmnumn + αpqupq)

= αmn

(
−k∆ +

∂

∂t

)
umn + αpq

(
−k∆ +

∂

∂t

)
upq

= 0,

since umn and upq are solutions.

(c) Here are the plots
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(a) Solution at t = 0.
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(b) Solution at t = 0.01.
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(c) Solution at t = 0.1.

Figure 1: The color displays the temperature as shown by the colorbar.

As time moves forward, we find that the plate is cooling down to the temperature of the
boundary. So, the whole plate will reach a temperature of zero if we go indefinitely far
in the future.

(d) k decides how quickly heat will flow in our material. Larger values of k means that
temperature will flow more easily. We can see this in the equation since a larger k will
make the exponential decay term in our equation approach zero more rapidly. One can
also repeat the plots in the previous part but for a larger value of k to see this in action.

(e) The mathematical reason why is similar to what we discussed in the previous part. If
we increase m or n, we find that the exponential decay happens at a quicker rate.

(f) Physically, as m and n increase, we have more hot and cold regions placed next to each
other. When there are two regions of vastly different temperature close to each other,
they will equilibrate more quickly. These two plots show what this looks like pictorially.
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(a) At t = 0, this is the profile for m = 3 and
n = 3.
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(b) At t = 0, this is the profile for m = 5 and
n = 5.

Figure 2: The color displays the temperature as shown by the colorbar.
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