
MATH 272, Homework 9, Solutions

Problem 1. Let Ψ(x) be a complex function with domain [0, L]. Show that multiplication
by a global phase eiθ does not affect the norm of Ψ(x) under the Hermitian (integral) inner
product. In more generality, this shows that you cannot fully determine a quantum state –
there will always be an undetermined phase.

Solution 1. We take the following

‖eiθΨ‖2 = 〈eiθΨ, eiθΨ〉 =

∫ L

0

(
eiθΨ(x)

) (
eiθΨ(x)

)∗
dx

=

∫ L

0

eiθe−iθΨ(x)Ψ∗(x)dx

=

∫ L

0

Ψ(x)Ψ∗(x)dx

= 〈Ψ,Ψ〉
= ‖Ψ‖2.
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Problem 2. Consider the real function f(x) = 1 on the domain [0, L].

(a) What is the norm of f , ‖f‖?

(b) Normalize f(x).

(c) Find a nonzero normalized polynomial of degree ≤ 1 that is orthogonal to f(x).

Solution 2.

(a) We compute the norm by

‖f‖ =
√
〈f, f〉 =

√∫ L

0

f 2(x)dx

=

√∫ L

0

1dx

=
√
L.

(b) We can normalize f by letting c be some constant and forcing

1 = ‖cf‖ = c2L.

Thus c = 1√
L

. We can write the normalized function as

h(x) =
1√
L
.

(c) Consider an arbitrary polynomial of degree ≤ 1 by putting g(x) = ax+ b. Now, we want
this polynomial to be orthogonal to f(x) which means that we want

〈f, g〉 = 0.

Let us compute the above

〈f, g〉 =

∫ L

0

f(x)g(x)dx

=

∫ L

0

ax+ bdx

=
aL2

2
+ bL

=
1

2
L (aL+ 2b) .

Hence, we can solve for a by

0 = aL+ 2b =⇒ a = −2b

L
.
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Now, g(x) = −2b
L
x+ b. But, we require g(x) to be normalized as well hence

1 = 〈g, g〉 =

∫ L

0

(
−2b

L
x+ b

)2

dx

=
b2L

3
.

Solving for b, we find b =
√

3
L

and hence we have that

g(x) = −2

√
3

L3
x+

√
3

L
..
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Problem 3. A wavefunction Ψ(x) for a particle in the 1-dimensional box [0, L] could be
written as a superposition of normalized states

ψn(x) =

√
2

L
sin
(nπx
L

)
.

That is,

Ψ(x) =
∞∑
n=1

anψn(x),

for some choice of the coefficients an.

(a) Let an =
√
6

nπ
. Show that Ψ(x) is normalized. Hint: first, use orthogonality of the states

ψn(x) to your advantage. Then you will need to know what an infinite series evaluates
to. Use a tool like WolframAlpha to evaluate this series.

(b) Note that we can approximate Ψ(x) by taking a finite sum approximation up to some
chosen N by

Ψ(x) ≈
N∑
n=1

anψn(x).

Plot the approximation of Ψ(x) for N = 1, 5, 50, 100. Hint: you can modify my Desmos
examples.

Solution 3. (a) To see that Ψ(x) is normalized we take

〈Ψ,Ψ〉 = 〈
∞∑
n=1

anψn(x),
∞∑
n=1

anψn(x)〉

=
∞∑
n=1

‖an‖2〈ψn, ψn〉 by orthogonality of the states

=
∞∑
n=1

6

n2π2

=
6

π2

∞∑
n=1

1

n2

=
6

π2
ζ(2)

= 1.

Note the sum above is the Zeta function we saw in Math 271 and ζ(2) is a well-known
value (that you can find by computing the above sum in, for example, WolframAlpha.

(b)
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(a) The approximation to Ψ(x) with N = 1. (b) The approximation to Ψ(x) with N = 5.

(c) The approximation to Ψ(x) with N = 50. (d) The approximation to Ψ(x) with N = 100.
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Problem 4. When making a measurement of the position of the particle, we will use the
position operator x. This is the same as the variable x in the original problem statement,
but it is also an operator!

(a) Show that the position operator x is Hermitian.

(b) We can compute the expected position of a particle with wavefunction Ψ(x) by comput-
ing

E[x] = 〈Ψ, xΨ〉.
Let Ψ(x) = 1√

2
ψ1(x)+ 1√

2
ψ2(x), compute E[x]. This value E[x] tells you where we expect

to find the particle on average.

(c) In fact, any real valued function V (x) of the position operator x is also Hermitian. Make
a quick argument on why this must be true.

Solution 4. (a) Let Ψ(x) and Φ(x) be arbitrary functions. Then we have

〈xΨ,Φ〉 =

∫ L

0

xΨ(x)Φ∗(x)dx

=

∫ L

0

Ψ(x) (xΦ(x))∗ dx since x is real valued

= 〈Ψ, xΦ〉.

Thus we have that the position operator is Hermitian.

(b) We can compute the expected value by

E[x] = 〈Ψ, xΨ〉 =

∫ L

0

Ψ(x)x∗Ψ(x)dx

=

∫ L

0

x

(
1√
2
ψ1(x) +

1√
2
ψ2(x)

)2

dx

=

∫ L

0

x

(
1

2
ψ2
1(x) + ψ1(x)ψ2(x) +

1

2
ψ2
2(x)

)
dx.

This can be split into three separate integrals. First,∫ L

0

x

2
ψ2
1(x)dx =

∫ L

0

x

L
sin2

(πx
L

)
dx =

L

4
.

Second, ∫ L

0

xψ1(x)ψ2(x)dx =

∫ L

0

2x

L
sin
(πx
L

)
sin

(
2πx

L

)
dx = −16L

9π2
.

Finally, ∫ L

0

xψ2
2(x)dx =

∫ L

0

x

L
sin2

(
2πx

L

)
dx =

L

4
.

Thus, we can add these all together to get

E[x] =
L

2
− 16L

9π2
≈ .32L .
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(c) If V (x) is real valued, then V ∗(x) = V (x). Hence, we have

〈VΨ,Φ〉 =

∫ L

0

V (x)Ψ(x)Φ∗(x)dx =

∫ L

0

Ψ(x) (V (x)Φ(x))∗ dx = 〈Ψ, V Φ〉.
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Problem 5. Another related operator is the momentum operator p = −i~ d
dx

. Using inte-
gration by parts, show that this operator is Hermitian.

Solution 5. We have

〈pΨ,Φ〉 =

∫ L

0

(
−i~dΨ

dx

)
Φ∗(x)dx

= −i~Ψ(x)Φ∗(x)|L0 +

∫ L

0

i~Ψ(x)
dΦ∗

dx
dx by integration by parts.

Note now that the boundary conditions require both Ψ(0) = Ψ(L) = 0 and Φ(0) = Φ(L) = 0,
since we are working over the space of solutions to the particle in the 1-dimensional box.
Hence, we have

〈pΨ,Φ〉 =

∫ L

0

i~Ψ(x)
dΦ∗

dx
dx

=

∫ L

0

Ψ(x)

(
−i~dΦ

dx

)∗
dx

= 〈Ψ, pΦ〉.

Thus, p is Hermitian.
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Problem 6. We can always take products, sums, and scalar multiples of operators to build
new operators. For example, in classical physics, we have the kinetic energy

T =
1

2
m~v · ~v,

where ~v is the velocity. In 1-dimension, this reduces to the familiar 1
2
mv2. However, we can

also rewrite this 1-dimensional equation using the momentum p = mv which gives us the
kinetic energy

T =
p2

2m
.

Hence, we can define the quantum kinetic energy operator

T =
p2

2m
.

(a) Show that T = −~2
2m

d2

dx2
.

(b) Make a quick argument as to why this kinetic energy operator T is Hermitian.

(c) Again, letting Ψ(x) = 1√
2
ψ1(x) + 1√

2
ψ2(x), compute E[T ]. The expected value E[T ] tells

us what the observed energy will be on average. Yet, any time we measure a system we
will find that energy must be one of the energy eigenvalues. Thus, for this wave function,
this expected value should be the average between E1 and E2 which means that half the
time we will measure the energy to be E1 and half the time it will be E2.

Solution 6.

(a) We have p = −i~ d
dx

. Then, we construct T by

T =
p2

2m
=

(
−i~ d

dx

)2
2m

=
−~2

2m

d2

dx2
.

(b) We have

〈TΨ,Φ〉 = 〈 p
2

2m
Ψ,Φ〉

= 〈p2Ψ, 1

2m
Φ〉 since

1

2m
is a real constant

= 〈pΨ, p

2m
Φ〉 since p is Hermitian

= 〈Ψ, p
2

2m
Φ〉

= 〈Ψ, TΦ〉.

Thus, T is Hermitian.
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(c) Now, most of the work has been done for us, and the rest here will be taken care of by
orthogonality. We take

〈Ψ, TΨ〉 = 〈 1√
2
ψ1 +

1√
2
ψ2,

E1√
2
ψ1 +

E2√
2
ψ2〉

=
E1

2
〈ψ1, ψ1〉+

E1

2
〈ψ2, ψ1〉+

E2

2
〈ψ1, ψ2〉+

E2

2
〈ψ2, ψ2〉

=
E1 + E2

2
.
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Problem 7. If we are given a potential (energy) V (x) and the kinetic energy T , we can take
their sum and form the total energy T + V (x) which we call the Hamiltonian. Thus, in the
quantum realm, we create the Hamiltonian operator H by

H = T + V (x).

(a) Show that the Hamiltonian operator is Hermitian. Hint: you have already done the
necessary work for this. You just need to combine it and show a few steps here.

(b) The spectrum of the Hamiltonian tells us the possible energy eigenvalues of a quantum
system. Thus, we can compute the spectrum (in this case) by solving the eigenvalue
equation

HΨ(x) = EΨ(x).

Explain why the spectrum of H is discrete for the particle in the box problem. Hint:
We have done this exact problem in the notes from Math 271. Feel free to use that!

Solution 7. (a) We know that both T and V (x) are Hermitian. Thus, we take

〈(T + V )Ψ,Φ〉 = 〈TΨ,Φ〉+ 〈VΨ,Φ〉 = 〈Ψ, TΦ〉+ 〈Ψ, V Φ〉 = 〈Ψ, (T + V )Φ〉

(b) Since V (x) = 0 in [0, L], we have that

H = T = − ~2

2m

d2

dx2
.

Hence, we are solving the equation

− ~2

2m

d2

dx2
Ψ(x) = EΨ(x).

Let ω2 = 2mE
~2 , and we have

Ψ′′(x) + ω2Ψ(x) = 0,

which is the harmonic oscillator equation. Thus, our solution is

Ψ(x) = C1e
iωx + C2e

−iωx.

Now, if we apply the boundary conditions, we have

0 = Ψ(0) = C1 + C2,

thus C1 = −C2. By Euler’s formula, we can take

C1e
iωx − C1e

−iωx = C sin(ωx).

Now, our other boundary condition states

0 = Ψ(L) = C sin(ωL),

Thus we must have ω = nπ
L

for an integer n. Now, this means

2mE

~2
= ω2 =

n2π2

L2
,

and we can solve for E to get

E =
n2π2~2

2mL2
,

which shows that the spectrum of H is discrete.
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