
MATH 272, Homework 7, Solutions
Due March 31st

Problem 1. Previously we studied the time-independent Schrödinger equation. Now, we
can take a look at the time-dependent version given by

HΨ(x, t) = i~
∂

∂t
Ψ(x, t),

where H is the Hamiltonian operator. Consider the situation for the free particle in the
1-dimensional box of length L so that V (x) = 0 and Ψ(0, t) = 0 = Ψ(L, t).

(a) Take a separation of variables ansatz and find a set of solutions (one for every positive
integer n) to the time-dependent equation.

(b) Show that a super position of solutions is also a solution.

(c) For a single state ψn(x, t), show that∫ L

0

|ψn(x, t)|2 dx,

is independent of t. This shows that the states ψn are stationary since their total
probability does not depend on time.

Solution 1.

(a) Here, we take
Ψ(x, t) = X(x)T (t),

where we allow for both X(x) and T (t) to take on complex values since Ψ(x, t) itself is
complex. Recall as well that

H =
~2

2m

∂2

∂x2
+ V (x).

Note that V (x) = 0 for a free particle, and thus our PDE takes the form(
− ~2

2m

∂2

∂x2
− i~ ∂

∂t

)
Ψ(x, t) = 0.

One may call the operator to the left of Ψ the time-dependent Schrödinger operator with
zero potential. Notice the similarities of this equation and the heat equation. The order
of the derivatives matches, but there now appears a complex constant in the mix. The
complex constant i~ will in fact make this equation act more like the wave equation in
it’s solution. Both interpretations have physical meaning however.

Plugging in our ansatz, we arrive at

− ~2

2m
X ′′T − i~XT ′ = 0.
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We can then separate the variables to arrive at the two ODEs

− ~2

2m

X ′′

X
= E and i~

T ′

T
= E.

Taking the T equation first, we find

T ′ =
−iE
~

T,

which has the general solution

T (t) = Ae−
iE
~ t.

Next, with the X equation, we have

X ′′ +
2m

~2
EX = 0,

which has a general solution

X(x) = Be

√
− 2mE

~2 x
+ Ce

−
√
− 2mE

~2 x

Note that T (t) cannot be zero unless the constant A = 0, which gives us only trivial
solutions. Hence, to satisfy our boundary conditions, we must have that X(0) = 0 and
X(L) = 0. Thus, it must be that E > 0 and we end up with

X(x) = B sin

(√
2mE

~2
x

)
+ C cos

(√
2mE

~2
x

)

Applying our boundary conditions yields that C = 0 and
√

2mE
~2 = nπ

L
for all positive

integers n. Thus,

Xn(x) = Bn sin
(nπx
L

)
and En =

n2~2π2

2mL2
.

Note that En now corresponds to the energy eigenvalues we found for the time-independent
equation! Our separation of variables technique gave us back the same spatial solution
as the time-independent case which is to be expected. This is why I used this notation
for the separation constant.

Plugging in En for the T solutions gives us

Tn(t) = Ane
−iEn~ t = Ane

−in
2~π2

2mL2 t

Our general solution for the time-dependent equation is then

ψn(x, t) = Cne
−in

2~π2
2mL2 t sin

(nπx
L

)
.

We refer to these solutions as the time-dependent states for the free particle in the
1-dimensional box.
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(b) Consider the superposition of all possible states

Ψ(x, t) =
∞∑
n=1

Cnψn(x, t).

We wish to show that this is also a solution to the equation. Plugging this in, we have(
− ~2

2m

∂2

∂x2
− i~ ∂

∂t

)
Ψ(x, t) =

(
− ~2

2m

∂2

∂x2
− i~ ∂

∂t

) ∞∑
n=1

Cnψn(x, t)

=
∞∑
n=1

Cn

(
− ~2

2m

∂2

∂x2
− i~ ∂

∂t

)
ψn(x, t)

= 0.

Note as well that each ψn(x, t) satisfies the boundary conditions ψn(0, t) = 0 = ψn(L, t).
Hence, it follows that Ψ(0, t) = 0 = Ψ(L, t).

(c) Note that

|ψn(x, t)| =
∣∣∣∣e−in2~π22mL2 t sin

(nπx
L

)∣∣∣∣
=

∣∣∣∣e−in2~π22mL2 t

∣∣∣∣ ∣∣∣sin(nπxL )∣∣∣
=
∣∣∣sin(nπx

L

)∣∣∣ .
Thus, it follows that the integral must also not depend on time since the magnitude of
the function we are integrating does not.
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Problem 2. Maxwell’s equations are given as

~∇ · ~B = 0 ~∇ · ~E =
ρ

ε0

~∇× ~B − µ0ε0
∂ ~E

∂t
= µ0

~J ~∇× ~E +
∂ ~B

∂t
= ~0

(a) Look up each of the terms in the equations above and describe them.

(b) Describe what each equation is saying and why these are PDEs.

(c) In the absence of all charges we will have ~J = ~0 and ρ = 0. Using that and the following
two facts

~∆~V = ~∇(~∇ · ~V )− ~∇× (~∇× ~V ) and ~∇× ∂~V

∂t
=

∂

∂t
(~∇× ~V ),

derive the vector wave equations for light(
−~∆ + µ0ε0

∂2

∂t2

)
~E = ~0

and (
−~∆ + µ0ε0

∂2

∂t2

)
~B = ~0

(d) From the equations you derived, determine the wave speed of light in the vacuum, c0.

Solution 2.

(a) From top left to bottom right, we have names for the equations. They are:

� Gauss’s law for magnetism: ~∇ · ~B = 0.

� Gauss’s law: ~∇ · ~E = ρ
ε0

.

� Ampère’s circuital law: ~∇× ~B − µ0ε0
∂ ~E
∂t

= µ0
~J .

� Faraday’s law of induction: ~∇× ~E + ∂ ~B
∂t

= ~0.

In the above equations we have a few terms that we should define and describe. First,
there are the fields, ~E and ~B which are the electric and magnetic fields respectively.
Both are functions of space and time, so we could put ~E(x, y, z, t) and ~B(x, y, z, t) if
we wanted to be a bit more transparent. Both of these fields cause forces on charged
particles and arise from the single electromagnetic field that permeates all of space.
Indeed, the fields themselves can also arise from charged particles as well. They can also
take on different values depending on how the charges are placed or whether or not they
are moving.

We refer to the static distribution of charge with the variable ρ which physically repre-
sents the charge density. In principle, this charge density (per unit volume) can depend
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on both space and time and we could put ρ(x, y, z, t) to again be fully transparent.
There may also be a current density (per unit area) present in space, which we repre-

sent by ~J . Again, this is a function that can change over space and time and we could
put ~J(x, y, z, t). The electric and magnetic fields become unified into the single electro-

magnetic field when we start to think of ρ and ~J as describing an analogous quantity.
One can realize this by noting that moving charges are what generate a current. If
two observers are to view the same configuration of charges and currents from different
perspectives (different reference frames) they may disagree on the values for ~E and ~B.
However, if you properly transform space and time between their perspectives, you will
see that this difference just has to do with their differences in relative motion. This
sparked the idea of Einstein and other physicists and mathematicians (like Lorentz) to

develop special relativity. Under special relativity, we see that these two fields ~E and ~B
are just portions of the electromagnetic field that depend on your relative motion.

Finally, we can take a look at the constants ε0 and µ0 which appear. In general, ε
describes the permittivity of a substance. That is, how freely the electric field ~E can
pass through a given substance. The subscript 0 pertaining to ε0 states that this is the
permittivity of free space (i.e., the permittivity of the vacuum). In this sense, even the
vacuum has some notion of resisting how the electric field can pass through it. On the
flip side, µ describes the permeability of a substance. It is the magnetic analog to ε.
So, in this case, µ0 represents the permeability of the vacuum. Roughly speaking, µ
is describing how easily a substance allows the magnetic field to pass through it. One
should be a bit careful here. We are actually finding that we may need to think about
these quantities in different ways as we learn more. So, this point of view may be a bit
defunct in some ways.

(b) The above equations are indeed PDEs. For each, we are intending to find vector fields
that satisfy conditions. In fact, each equation is coupled to one another. Specifically,
what this means is that we require the vector field ~E and ~B to simultaneously solve all
of the above equations. We take ρ and ~J to be external to these equations in that these
are values we supply in order to determine the induced fields ~E and ~B.

In this sense, these are PDEs of vector fields while all the previous examples we had
considered were PDEs of scalar fields. One may then refer to these equations as vector
PDEs and the others as scalar PDEs.

Lastly, it may be illuminating to see that if we supply no charge density ρ and no current
density ~J , that the equations above still provide nontrivial solutions! That is, the vector
fields aren’t just constants. We will see this in the next part.

If we remove all current density by taking ~J to be zero and we let ρ(x, y, z) not depend
on time, then we arrive at the vacuum electrostatic equations

~∇× ~E = ~0 and ~∇ · ~E =
ρ

ε0
.

Here, we can see that ~E is conservative since its curl is zero. Indeed, that means there
exists a potential function φ(x, y, z) such that ~∇φ = ~E. This potential is called the
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electrostatic potential or the voltage. Thus, the equations simply reduce to finding a
scalar field φ such that

∆φ =
ρ

ε0
,

which is the Poisson equation. Once again, we arrive back at an equation we have seen
in other contexts. Note that this means we actually only define φ up to a constant!
Typically, we choose to let this constant be zero. One may call this gauge fixing.

Analogously, we can force ρ to be zero and let ~J(x, y, z) not depend on time and we
arrive at the realm of the vacuum magnetostatic equations given by

~∇ · ~B = 0 and ~∇× ~B = µ0
~J .

Note that when we are working in R3, if we have ~∇ · ~B = 0, it means that ~B = ~∇× ~A
where we refer to the vector field ~A as the vector potential for the vector field ~B. This is
analogous to having a scalar potential when a vector field is curl free. By the Helmholtz
decomposition of vector fields, we know that ~A can be written as a part that is curl free
plus a part that is divergence free. Thus, if we choose to let ~∇ · ~A = 0, we can still
satisfy ~∇× ~A = ~B and by doing this we have

~∇
(
~∇ · ~A

)
− ~∇×

(
~∇× ~A

)
= ~∆ ~A = ~J .

However, the divergence of ~A being zero implies that we must have

~∆ ~A = ~J ,

which is the vector form of the Laplace equation. The choice of forcing the extra condi-
tion

~∇ · ~A = 0,

fixes what we refer to as the Coulomb gauge. One may also notice that the idenity

~∇ ·
(
~∇× ~V

)
= 0,

means that we must have ~∇ · ~J = 0. So, we can only find magnetostatic vector fields
when we have a source/sink free current.

(c) Now, let us fix ρ = 0 and ~J = ~0. Then, we can take the curl of Faraday’s law yields

~∇×
(
~∇× ~E +

∂ ~B

∂t

)
= ~0

=⇒ ~∇×
(
~∇× ~E

)
+ ~∇×

(
∂ ~B

∂t

)
= ~0

=⇒ ~∇
(
~∇ · ~E

)
− ~∆~E +

∂

∂t

(
~∇× ~B

)
= ~0

=⇒ − ~∆~E +
∂

∂t

(
µ0ε0

∂ ~E

∂t

)
= ~0

=⇒
(
−~∆ + µ0ε0

∂2

∂t2

)
~E = ~0,

6



which is our intended equation. Likewise, we can take the curl of Ampère’s law to get

~∇×
(
~∇× ~B − µ0ε0

∂ ~E

∂t

)
= ~0

=⇒ ~∇×
(
~∇× ~B

)
− ~∇×

(
µ0ε0

∂ ~E

∂t

)
= ~0

=⇒ ~∇
(
~∇ · ~B

)
− ~∆ ~B − µ0ε0

∂

∂t

(
~∇× ~E

)
= ~0

=⇒ − ~∆ ~B − µ0ε0
∂

∂t

(
−∂

~B

∂t

)
= ~0

=⇒
(
−~∆ + µ0ε0

∂2

∂t2

)
~B = ~0,

which is the other intended equation. These are both the vector wave equations for the
electromagnetic field. Otherwise known as light.

(d) The wavespeed in the wave equation is typically written as c and appears as(
−~∆ +

1

c2
∂2

∂t2

)
.

Hence, the wave speed here is

c0 =
1

√
µ0ε0

= 2.998 · 108m/s,

which is the speed of light in the vacuum.
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Problem 3. In 3-dimensional space, we can write down the Hamiltonian operator for an
electron orbiting a proton. Specifically, this is

H = − ~2

2µ
∆ + V (x, y, z).

where µ is the reduced mass and with the Coulomb potential

V (x, y, z) =
1

4πε0

e2√
x2 + y2 + z2

,

which is the electrostatic potential created by a single proton pulling on a single electron.

(a) Write down the time independent Schrödinger equation in spherical coordinates. That
means you must also convert the laplacian as well.

(b) Take the separation of variables ansatz Ψ(r, θ, φ) = R(r)Y (θ, φ) and show that the time
independent equation is separable into radial and angular components.

Solution 3.

(a) First, we note that in spherical coordinates the potential is given by

V (r, θ, φ) =
1

4πε0

e2

r
,

where e is the charge of a proton. One can note that this potential is spherically sym-
metric since there is no dependence on θ or φ. Indeed, this means the potential is also
conservative.

The laplacian in spherical coordinates is given by

∆f(r, θ, φ) =
1

r2
∂

∂r

(
r2
∂f

∂r

)
+

1

r2 sin2 φ

∂2f

∂θ2
+

1

r2 sinφ

∂

∂φ

(
sinφ

∂f

∂φ

)
and hence our Hamiltonian is

H = − ~2

2µ

[
1

r2
∂

∂r

(
r2
∂

∂r

)
+

1

r2 sin2 φ

∂2

∂θ2
+

1

r2 sinφ

∂

∂φ

(
sinφ

∂

∂φ

)
+

e2

4πε0r

]
and the time independent Schrödinger equation is

HΨ(r, θ, φ) = EΨ(r, θ, φ).

(b) Taking the ansatz Ψ(r, θ, φ) = R(r)Y (θ, φ), we have the time independent Schödinger
equation yields

− ~2

2m

[
1

r2
∂

∂r

(
r2
∂

∂r

)
+

1

r2 sin2 φ

∂2

∂θ2
+

1

r2 sinφ

∂

∂φ

(
sinφ

∂

∂φ

)
+

1

4πε0r

]
RY = ERY.
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Then, we have

− ~2

2µ

[
Y

r2
d

dr

(
r2
dR

dr

)
+

R

r2 sin2 φ

∂2Y

∂θ2
+

R

r2 sinφ

∂

∂φ

(
sinφ

∂Y

dφ

)]
+
RY e2

4πε0r
= ERY.

We can then multiply by r2 and divide by RY to yield

− ~2

2µ

[
1

R

d

dr

(
r2
dR

dr

)
+

1

Y sin2 φ

∂2Y

∂θ2
+

1

Y sinφ

∂

∂φ

(
sinφ

∂Y

∂φ

)]
+

e2

4πε0r
.

We can note that we have

1

R

d

dr

(
r2
dR

dr

)
+

2µ

~2

(
E +

e2

4πε0r

)
= − 1

Y sin2 φ

∂2Y

∂θ2
+

1

Y sinφ

∂

∂φ

(
sinφ

∂Y

∂φ

)
The left side depends solely on r and the right side depends solely on θ and φ, therefore
this is separable.

Problem 4 (BONUS). The differential equation for the static magnetic field ~B is given by
Ampere’s law

~∇× ~B = µ0
~J .

This equation is solvable by the Biot-Savart law. Let us consider a loop of wire with a
constant current so that

~γ(t) =

cos(t)
sin(t)

0

 t ∈ [0, 2π],

and ~J = J~̇γ(t) along ~γ and is zero elsewhere. Let ~x =

xy
z

 denote the position in space

we wish to measure the magnetic field.

(a) The Biot-Savart law says

~B(~x) =
µ0

4π

∫
~γ

(Jd~γ)× (~x− ~γ)

|~x− ~γ|
.

Find ~B using this law. Note that the magnetic field is ill defined along the current loop it-
self. See https://pages.uncc.edu/phys2102/online-lectures/chapter-7-magnetism/
7-2-magnetic-field-biot-savart-law/example-magnetic-field-of-a-current-loop/

for help.

(b) Draw a picture displaying what the above integral is computing.

(c) Compute ~∇× ~B. Is your answer a solution to Ampere’s law?
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