
MATH 272, Homework 6, Solutions

Problem 1. Consider the 1-dimensional wave equation given by(
− ∂2

∂x2
+

1

c2
∂2

∂t2

)
u(x, t) = 0.

We’ll consider two distinct scenarios. First, we’ll take an infinitely long elastic rod and
second we’ll take a rod of finite length with Dirichlet boundary conditions.

(a) For a rod of infinite length, consider the initial conditions

u(x, 0) =


x+ 1 −1 ≤ x ≤ 0

1− x 0 ≤ x ≤ 1

0 otherwise

and
∂

∂t
u(x, 0) = 0.

Find and plot the portion of the wave that moves to the right with c = 1.

(b) Let uR(x, t) be your solution from (a), show that this satisfies the right-moving wave
equation (

∂

∂x
+

1

c

∂

∂t

)
uR(x, t) = 0.

(c) Why is it that we can ignore the points where your function uR(x, t) is not differentiable
even though we are considering this as a solution to a PDE?

(d) For an elastic rod Ω of finite length, Ω = [0, 1], assume that we take the Dirichlet
conditions u(0, t) = 0 = u(1, t). With the initial conditions

u(x, 0) = sin(πx) and
∂

∂t
u(x, 0) = 0,

find the solution using d’Alembert’s formula.

(e) Let w(x, t) be your solution for (d), show that it is indeed equal to

w(x, t) = sin(πx) cos(πct).

(f) With your result from (e), explain how we can decompose a standing wave into a linear
combination of two waves; one moving towards the left and one moving towards the
right and both reflecting off the boundary.

Solution 1.
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(a) We have that the solution is given by

u(x, t) =
1

2
(uL(x, t) + uR(x, t)) ,

where uL(x, t) is a portion of the wave moving to the left and uR(x, t) is the portion of
the wave moving towards the right. From our initial conditions, we have

uL(x, t) =


x+ ct+ 1 −1 ≤ x+ ct ≤ 0

1− x− ct 0 ≤ x+ ct ≤ 1

0 otherwise

and uR(x, t) =


x− ct+ 1 −1 ≤ x− ct ≤ 0

1− x+ ct 0 ≤ x− ct ≤ 1

0 otherwise

,

which follows from d’Alembert’s formula.

We can then plot uR(x, t) for a few different times with c = 1.

Figure 1: Plots of uR for t = 0 (green), t = 1/2 (blue), t = 1 (purple), t = 2 (red), and t = 4
(orange).

(b) We can take the derivatives of uR(x, t) to get

∂

∂x
uR(x, t) =


1 −1 < x− ct < 0

−1 0 < x− ct < 1

0 otherwise

as well as

1

c

∂

∂t
uR(x, t) =

1

c


−c −1 < x− ct < 0

c 0 < x− ct < 1

0 otherwise

.
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Then, if we add the two together, we get our intended result(
∂

∂x
+

1

c

∂

∂t

)
uR(x, t) = 0

Notice, this is true aside from the three points where we see the kinks in our wave.

(c) The function may not be differentiable at three distinct x values for every time t, but
this is fairly unimportant. Roughly speaking, we can choose to ignore three points in
which we have issues since this works on infinitely many other points. There is more
detail here, but that is mathematics left to discover for yourself on a later day.

(d) From d’Alembert’s formula we see that

uL(x, t) = sin(π(x+ ct)) and uR(x, t) = sin(π(x− ct)).

Hence, our solution is given by

u(x, t) =
1

2
(sin(π(x+ ct)) + sin(π(x− ct))) .

(e) Note that we have the trigonometric identity

sin(a+ b) = sin(a) cos(b) + cos(a) sin(b).

Applying this to uL and uR we have

uL(x, t) = sin(πx+ πct) = sin(πx) cos(πct) + cos(πx) sin(πct),

and
uR(x, t) = sin(πx− πct) = sin(πx) cos(−πct) + cos(πx) sin(−πct).

Then, we have

u(x, t) =
1

2
(sin(πx) cos(πct) + cos(πx) sin(πct) + sin(πx) cos(−πct) + cos(πx) sin(−πct))

=
1

2
(sin(πx) cos(πct) + sin(πx) cos(πct) + cos(πx) sin(πct)− cos(πx) sin(πct))

= sin(πx) cos(πct) = w(x, t),

which is indeed the solution we have found to this problem previously.

(f) In the previous example, we took two different waves; one moving towards the left and
one moving towards the right. It turned out that adding these solutions could be cleverly
combined into a single standing wave solution. Essentially, the separation of variables
seems to help us find standing waves (though it can also find traveling waves) where
as the d’Alembert method decomposes waves into their portions that move in either
direction naturally.

In this case, it must be that the traveling waves are reflected by the boundaries in order
to produce a standing wave. If you play with a slinky, you may be able to discover this
behavior yourself!
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Problem 2. Consider the 1-dimensional wave equation given by(
− ∂2

∂x2
+

1

c2
∂2

∂t2

)
u(x, t) = 0,

with the domain Ω as the unit interval on the x-axis. We shall fix the string at each endpoint
which requires u(0, t) = 0 and u(1, t) = 0 for all t. Take the initial condition as well to be a
plucked string so that u(x, 0) = sin(πx) and ∂

∂t
u(x, 0) = 0.

(a) Use the separation of variables ansatz u(x, t) = X(x)T (t) to get a new separation con-
stant. This will give two ODEs: one will be in terms of X(x) and the other will be in
terms of T (t).

(b) Use the boundary conditions and solve the ODE that is in terms of X(x) which will
simultaneously find the allowed values for the separation constant.

(c) Using these allowed values for the separation constant, find the solution for T (t).

(d) Find the particular solution for u(x, t) by matching the initial condition.

(e) Plot your solution for x ∈ [0, 1] and t ∈ [0,∞) (i.e., just plot up to a large value of t).
In this case, compare your plots for c = 1/2 and c = 1.

Solution 2.

(a) If we take u(x, t) = X(x)T (t), then plugging this into the PDE yields

−X ′′T +
1

c2
XT ′′ = 0.

We can then isolate each variable on one side of the equal sign to get

X ′′

X
=

1

c2
T ′′

T
.

Note that the left hand side depends only on x, whereas the right hand side depends
solely on t. Thus, it must be that both sides equal the same constant λ. This gives us
two ODEs

X ′′ − λX = 0 and T ′′ − c2λT = 0.

(b) The boundary conditions are a spatial condition and thus we must satisfy them inde-
pendent of time. Hence, we must have that X(0) = 0 and X(1) = 0 so that u(0, t) = 0
and u(1, t) = 0 respectively. This means that λ < 0 so that we get

X(x) = a cos(
√
−λx) + b sin(

√
−λx),

since if λ ≥ 0 we will only get constant solutions which are trivial and can’t match the
initial conditions or exponential solutions which can’t match the boundary conditions.
Applying the boundary conditions yields that A = 0 and

√
−λ = nπ for any positive

integer n. Thus we have
Xn(x) = an sin(nπx),

is (nontrivial) a solution to this ODE for every positive integer n.

4



(c) Using this result for λ, we have that

Tn(t) = bn sin(cnπt) + cn cos(cnπt),

for every positive integer n.

(d) Combining to get un(x, t) = Xn(x)Tn(t), we can write

un(x, t) = (an sin(cnπt) + bn cos(cnπt)) sin(nπx),

is a general solution for each positive integer n. Note that we have just renamed constants
here to write this more simply. Now, in general, a sum of these solutions is also a solution,
but we have

u(x, 0) = sin(πx),

which means that n = 1, a1 = 0, and b1 = 1. All other constants aj and bj are all zero.
One can then check that our solution

u(x, t) = cos(cπt) sin(πx),

satisfies ∂
∂t
u(x, 0) = 0.

(e) Here are the plots for these functions. Note that in this case, we plotted the solution
as a surface with one of the axes representing time. This still just shows how the
1-dimensional elastic evolves over time. We see that when c is increased, the elastic
vibrates more quickly.
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Figure 2: The graph of the solution u(x, t) for c = 1/2.
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Figure 3: The graph of the solution u(x, t) for c = 1.

Problem 3. Consider the heat flow problem on the region Ω = [0, 1] given by
∂
∂t
u(x, t) = ∂2

∂x2
u(x, t)− 1, in (0, 1),

u(0, t) = 0 and u(1, t) = 1, as boundary conditions,

u(x, 0) = sin (πx) + 1
2
(x2 + x), as the initial condition.

This corresponds to a rod kept at fixed temperatures at the endpoints that starts with a
warm center initially.

(a) As with the previous homework, take an ansatz

u(x, t) = v(x, t) + uE(x)

where v(x, t) solves the following problem{
∂
∂t
v(x, t) = ∂2

∂x2
v(x, t), in (0, 1),

v(0, t) = 0 and v(1, t) = 0, as boundary conditions.

Find the general solution v(x, t) using separation of variables. Hint: feel free to use
the work in the notes (Example “Solving the Heat Equation” and Example “Particular
Solution to the 1D Heat Equation”).

(b) Show that for u(x, t) to be a solution that

∂2

∂x2
uE(x) = 1.

(c) Find the solution uE(x) to the following problem{
∂2

∂x2
uE(x) = 1, in (0, 1),

uE(0) = 0 and uE(1) = 1, as boundary conditions.
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(d) All is left in determining the function u(x, t) is to determine the particular solution that
satisfies the initial condition. Using our ansatz u(x, t) = v(x, t) + uE(x), determine the
particular solution.

Solution 3.

(a) Based on the examples, we know

v(x, t) = Ae−λt sin(
√
λx) +Be−λt cos(

√
λx).

Taking the boundary conditions v(0, t) = 0 yields that B = 0 as in the example and
taking v(1, t) = 0 makes us realize

√
λ = nπ for any integer n (again via the examples).

Hence,
v(x, t) = Ane

−n2π2t sin(nπx).

(b) If we apply our ansatz with our given information about v(x, t) we must have

− ∂

∂t
u(x, t) =

∂2

∂x2
u(x, t)− 1

− ∂

∂t
(v(x, t) + uE(x)) =

∂2

∂x2
(v(x, t) + uE(x))− 1

0 =
∂2

∂x2
uE(x)− 1,

since v(x, t) is a solution to the heat equation. Thus,

∂2

∂x2
uE(x) = 1

(c) To find this particular solution, we first note that the general solution can be found by
integrating twice. That is,

uE(x) =
1

2
x2 + c1x+ c2.

Applying the boundary conditions,

0 = uE(0) = c2,

so c2 = 0 and

1 = uE(1) =
1

2
+ c1,

so c1 = 1
2
. Thus,

uE(x) =
1

2
(x2 + x).

(d) To find our particular solution, we require

u(x, 0) = v(x, 0) + uE(x),
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which means

sin (πx) +
1

2
(x2 + x) = An sin(nπx) +

1

2
(x2 + x),

and we find that n = 1 and An = 1 as well. Hence, our particular solution is

u(x, t) = v(x, t) + uE(x) = e−π
2t sin (πx) +

1

2
(x2 + x).

Problem 4 (Bonus). Take the set up from the previous problem, but let us modify the
initial conditions and boundary conditions slightly. Instead, we have

∂
∂t
u(x, t) = ∂2

∂x2
u(x, t)− 1, in (0, 1),

u(0, t) = 0 and u(1, t) = 0, as boundary conditions,

u(x, 0) = −(2x− 1)2 + 1, as the initial condition.

We want to discover how we can possibly solve problems with more general initial conditions.
If you pay attention to the work in 3, you will find the initial conditions were chosen in a
very contrived manner. This is not ideal if we want to solve a problem in general!

Taking a look at Example “Particular Solution to the 1D Heat Equation” in the notes.
Notice that it is of the form

un(x, t) = Ane
−n2π2

sin(nπx),

is a general solution for all integers n.

(a) Can you recreate the initial condition u(x, 0) with a single un(x, 0)?

(b) Can you recreate the initial condition with a finite sum of un(x, 0)?

(c) Suppose that we can take an infinite sum

∞∑
n=1

Ane
−n2π2

sin(nπx).

Show that
∞∑
n=1

−8 (2 (−1)n − 2)

π3n3
sin (nπx) = u(x, 0)

by plotting both u(x, 0) and the sum (up to a large N) simultaneously. It is worthwhile
to steadily increase the upper bound of the sum to see this convergence!

(d) Comment on this. Do you think this is something we can do in general for any initial
condition?

Solution 4. (a) No! There is no way that we can have any kind of sine function equal to a
polynomial. Just look at the Taylor series for sin(x)!

(b) No, this is also not doable. Once again, you’d have an infinite polynomial via the Taylor
series. This cannot be.
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(c) Here is the figure.

(a) Plotting both u(x, 0) and
the sum up to N = 1.

(b) Plotting both u(x, 0) and
the sum up to N = 4.

(c) Plotting both u(x, 0) and
the sum up to N = 50.
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