
MATH 272, Homework 8, Solutions
Due April 6th

Problem 1. Plot each of the following vector fields.

(a) r̂ = x√
x2+y2+z2

x̂+ y√
x2+y2+z2

ŷ + z√
x2+y2+z2

ẑ.

(b) θ̂ = −y√
x2+y2

x̂+ x√
x2+y2

ŷ.

(c) φ̂ = xz√
x2+y2

√
x2+y2+z2

x̂+ yz√
x2+y2

√
x2+y2+z2

ŷ +
−
√
x2+y2√

x2+y2+z2
ẑ.

Solution 1.

(a) Here is the plot for r̂.

(b) Here is the plot for θ̂.
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(c) Here is the plot for φ̂.
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Problem 2. Consider the following vector field

~E =
x

(x2 + y2 + z2)3/2
x̂+

y

(x2 + y2 + z2)3/2
ŷ +

z

(x2 + y2 + z2)3/2
ẑ,

which you can think of as the electric field of a positive point charge. We argued that this
field ~E is conservative in a previous homework problem. Specifically, ~E = ~∇φ, for some
scalar field φ. This follows from Faraday’s law for static charges.

(a) Compute the integral

T =

∫
~γ

~E · d~γ where ~γ(t) =

tt
t

 ,

and a ≤ t ≤ b with a and b both greater than 0. Note that this integral T describes the
gain in kinetic energy of a charged particle that moved along the path ~γ.

(b) Equivalently, since ~E is conservative, we have

T =

∫
~γ

~E · d~γ = φ(~γ(b))− φ(~γ(a)).

Show that this is true for the given vector field and potential. This shows that the choice
of path does not matter; only the endpoints ~γ(a) and ~γ(b) matter.

(c) Argue why the integral around any closed curve must be zero.

Solution 2. (a) First, note that

d~γ = ~̇γdt = (x̂+ ŷ + ẑ)dt.

Thus, we have that

~E · d~γ =
x+ y + z

(x2 + y2 + z2)3/2
dt.

Now, we have ∫
~γ

~E · dγ =

∫ b

a

t+ t+ t

(t2 + t2 + t2)3/2
dt

=

∫ b

a

3t

(3t2)3/2
dt

=

∫ b

a

1√
3

1

t2
dt

=
−1√

3

(
1

b
− 1

a

)
.
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(b) Note that we have

φ(x, y, z) =
−1√

x2 + y2 + z2
,

from previous homeworks. Then, we have

φ(~γ(b))− φ(~γ(a)) =
−1√

b2 + b2 + b2
− 1√

a2 + a2 + a2

=
−1√

3

(
1

b
− 1

a

)
(c) For a closed curve, we have ~γ(b) = ~γ(a) and thus∫

~γ

~E · dγ = φ(~γ(b))− φ(~γ(a)) = φ(~γ(a))− φ(~γ(a)) = 0.
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Problem 3. Let us see some of the benefit of using spherical coordinates.

(a) Using the fact that

r̂ =
x√

x2 + y2 + z2
x̂+

y√
x2 + y2 + z2

ŷ +
z√

x2 + y2 + z2
ẑ,

convert the vector field ~E into spherical coordinates (i.e., only a function of r, θ, φ, and
r̂, θ̂, and φ̂).

(b) Parameterize the surface of a sphere of radius R (which we’ll call Σ) as well as the
outward normal vector n̂ and in spherical coordinates.

(c) Compute the following integral using spherical coordinates that we have found:

x

Σ

~E · n̂dΣ,

where dΣ will be the area form in spherical coordinates.

Solution 3.

(a) We have

~E =
x

(x2 + y2 + z2)3/2
x̂+

y

(x2 + y2 + z2)3/2
ŷ +

z

(x2 + y2 + z2)3/2
ẑ

=
1

x2 + y2 + z2

(
x√

x2 + y2 + z2
x̂+

y√
x2 + y2 + z2

ŷ +
z√

x2 + y2 + z2
ẑ

)
=

1

x2 + y2 + z2
r̂

=
1

r2
r̂.

(b) We have the parameterization of the surface of a unit sphere given by letting r = R and
θ ∈ [0, 2π) and φ ∈ [0, π]. If we then attempt to compute the unit vector, we can use
the implicit equation

f(x, y, z) = x2 + y2 + z2 = R2.

From this, we have

n̂ =
~∇f∣∣∣~∇f
∣∣∣

=
2x√

4x2 + 4y2 + 4z2
x̂+

2y√
4x2 + 4y2 + 4z2

ŷ +
2z√

4x2 + 4y2 + 4z2
ẑ

= r̂.
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(c) From the previous work, we have that

~E · n̂ =
1

r2
.

Then, this gives us

x

Σ

~E · n̂dΣ =

∫ π

0

∫ 2π

0

1

R2
R2 sinφ dθ dφ

= 2π

∫ π

0

sinφ dφ

= 4π.

One can notice that the radius of the sphere does not come into play here.
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Problem 4. Note that the Laplacian ∆ in cylindrical coordinates is given by

∆f(ρ, θ, z) =
1

ρ

∂

∂ρ

(
ρ
∂f

∂ρ

)
+

1

ρ2

∂2f

∂θ2
+
∂2f

∂z2
.

Compute the Laplacian of
f(ρ, θ, z) =

√
ρ2 + z2z cos(θ).

Solution 4. Let’s compute each term and then add them together. We have

A =
1

ρ

∂

∂ρ

(
ρ
∂f

∂ρ

)
=
z cos θ

ρ

∂

∂ρ

(
ρ2√
ρ2 + z2

)

=
z cos θ

ρ

(
2ρ√
ρ2 + z2

− ρ

(ρ2 + z2)

)

= z cos θ

(
2√

ρ2 + z2
− 1

(ρ2 + z2)

)
.

Likewise, we have

B =
1

ρ2

∂2f

∂θ2
= −

√
ρ2 + z2z cos θ

ρ2
.

Lastly, we have

C =
∂2f

∂z2
= cos θ

∂

∂z

∂

∂z

(
z
√
ρ2 + z2

)
= cos θ

∂

∂z

(√
ρ2 + z2 +

z2√
ρ2 + z2

)

= cos θ

(
z√

ρ2 + z2
+

2z√
ρ2 + z2

− z3

(ρ2 + z2)3/2

)
.

Then we have that
∆f = A+B + C.
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Problem 5. Note that the Laplacian ∆ in spherical coordinates is given by

∆f(r, θ, φ) =
1

r2

∂

∂r

(
r2∂f

∂r

)
+

1

r2 sin2 φ

∂2f

∂θ2
+

1

r2 sinφ

∂

∂φ

(
sinφ

∂f

∂φ

)
.

Compute the Laplacian of
f(r, θ, φ) = r2 cos(θ) cos(φ).

Solution 5. This needs redone as theta and phi were switched Again, we will do this piece
by piece. First, we have

A =
1

r2

∂

∂r

(
r2∂f

∂r

)
=

cos θ cosφ

r2

∂

∂r

(
2r3
)

=
cos θ cosφ

r2
6r2

= 6 cos θ cosφ.

Next, we have

B =
1

r2 sin θ

∂

∂θ

(
sin θ

∂f

∂θ

)
=

cosφ

sin θ

∂

∂θ

(
− sin2 θ

)
= −2 cos θ cosφ.

Lastly, we have

C =
1

r2 sin2 θ

∂2f

∂φ2
=

cos θ

sin2 θ
(− cosφ)

=
− cos θ cosφ

sin2 θ
.

Then,
∆f = A+B + C.
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Problem 6. (BONUS) The following problem is a somewhat pop-culture math paradox
known as the napkin ring problem (see Vsauce for more). Consider the following problem.
We want to compute the volume inside a ball of radius R after drilling out an inscribed
cylinder of height h. See the following picture.

h

The question is, does the left over volume (of the napkin ring) depend on the radius R
of the sphere. You have your choice of working in spherical or cylindrical coordinates. Use
whichever helps you most.

Solution 6.
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