
MATH 272, Homework 6, Solutions
Due March 24th

Problem 1. Let

~γ(t) =

cos(t)
sin(t)
t

 , f(x, y, z) = x2 + y2 − 2z2, ~V (x, y, z) =

x− yy + x
z

 .

Compute derivatives of the following composite functions.

(a) f(~γ(t)).

(b) ~V (~γ(t)).

(c) f(~V (x, y, z)).

Solution 1.

(a) We are considering the composite function f ◦ ~γ : R → R. Hence, our result for the
derivative must be a linear function (f ◦ ~γ)′ : R → R. Specifically, this means that at
any time t, we have a 1× 1-matrix as the derivative. Following our nose, we can use the
chain rule

(f ◦ ~γ)′ = ~∇f(~γ(t))~̇γ(t).

Note that here we think of ~∇f as the 1×3 row vector (which is often called a covector).
Why is that? Well, recall that f : R3 → R and hence the derivative is a linear function
f ′ = ~∇f : R3 → R. Hence, ~∇f must be a matrix that multiplies by a column vector (a

3× 1-matrix) and gives us a number. This must mean that ~∇f is a 1× 3-matrix. Now,

~∇f =
(
2x 2y −4z

)
,

and
~∇f(~γ(t)) =

(
2 cos(t) 2 sin(t) −4t

)
.

Then,

~̇γ(t) =

− sin(t)
cos(t)

1

 .

Thus,

~∇f(~γ(t))~̇γ(t) =
(
2 cos(t) 2 sin(t) −4t

)− sin(t)
cos(t)

1


= −2 cos(t) sin(t) + 2 cos(t) sin(t)− 4t

= −4t.
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(b) Now ~V ◦ ~γ : R→ R3 and so we are expecting a 3× 1-matrix result. In this case, it will
be given by (

~V ◦ ~γ
)′

= [J ]~V (~γ(t))~̇γ(t).

We compute the derivative of ~V as the Jacobian

[J ]~V (x, y, z) =

1 −1 0
1 1 0
0 0 1

 ,

which is constant. This means that

[J ]~V (~γ(t)) =

1 −1 0
1 1 0
0 0 1

 .

We already computed ~̇γ, and thus

[J ]~V (~γ(t))~̇γ(t) =

1 −1 0
1 1 0
0 0 1

− sin(t)
cos(t)

1


=

− sin(t)− cos(t)
− sin(t) + cos(t)

1

 .

(c) Finally, note f ◦ ~V : R3 → R, which means we expect a 1 × 3 matrix for (f ◦ ~V )′. We
have that

(f ◦ ~V )′ = ~∇f(~V (x, y, z))[J ]~V (x, y, z),

where again we think of ~∇f as a covector. Now, this yields

~∇f(~V (x, y, z))[J ]~V (x, y, z) =
(
2(x− y) 2(x+ y) −4z

)1 −1 0
1 1 0
0 0 1


=
(
4x 4y −4z

)
.
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Problem 2. Show that for any smooth (more than twice differentiable) fields f(x, y, z) and
~V (x, y, z) that

(a) ~∇×
(
~∇f
)

= ~0;

(b) ~∇ ·
(
~∇× ~V

)
= 0.

Solution 2.

(a) We have that

~∇f =

∂f
∂x
∂f
∂y
∂f
∂z

 =

V1V2
V3

 .

Taking the curl yields

~∇×
(
~∇f
)

=

∂V3
∂y
− ∂V2

∂z
∂V1
∂z
− ∂V3

∂x
∂V2
∂x
− ∂V1

∂y

 =


∂2f
∂z∂y
− ∂2f

∂y∂z
∂2f
∂x∂z
− ∂2f

∂z∂x
∂2f
∂y∂x
− ∂f

∂x∂y

 =

0
0
0

 ,

since partial derivatives commute for any smooth scalar field.

(b) First, the curl is

~∇× ~V =

∂V3
∂y
− ∂V2

∂z
∂V1
∂z
− ∂V3

∂x
∂V2
∂x
− ∂V1

∂y

 ,

and we can take the divergence

~∇ ·
(
~∇× ~V

)
=

∂

∂x

(
∂V3
∂y
− ∂V2

∂z

)
+

∂

∂y

(
∂V1
∂z
− ∂V3

∂x

)
+

∂

∂z

(
∂V2
∂x
− ∂V1

∂y

)
= 0,

again since partial derivatives commute.
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Problem 3. Let

~U(x, y, z) =

−yx
0

 and ~V (x, y, z) =

2x
2y
2z

 ,

be vector fields.

(a) Explain why there exists no potential function φ(x, y, z) for the vector field ~U .

(b) Explain why there does exist a potential function φ(x, y, z) for the field ~V .

(c) Compute the potential function for ~V .

Solution 3.

(a) There exists a potential function if the curl of ~U is zero. So, taking the curl we find

~∇× ~U =

0
0
2

 ,

which is nonzero. Thus, there cannot be a potential function for ~U .

(b) Likewise, taking the curl for ~V we get

~∇× ~U =

0
0
0

 .

Hence, there must be a potential function for ~V .

(c) To compute the potential φ(x, y, z), we integrate V1 with respect to x, V2 with respect
to y, and V3 with respect to z. This yields

φ(x, y, z) =

∫
2xdx = x2 + ψ1(y, z)

φ(x, y, z) =

∫
2ydy = y2 + ψ2(x, z)

φ(x, y, z) =

∫
2zdz = z2 + ψ3(x, y).

Since these are all equal, we must have that

φ(x, y, z) = x2 + y2 + z2 + C,

where C is a constant.
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Problem 4. Parameterize the following either implicitly or explicitly. In Cartesian coordi-
nates, find the parameterization of the normal vector as well.

(a) The plane perpendicular to the vector ~v = x̂+ ŷ+ ẑ passing through the point (1, 1, 1).

(b) The upper half of the unit circle in R2.

(c) The surface of the unit sphere in R3.

Solution 4.

(a) Based on the vector perpendicular to the plane ~v, we are looking for a plane given by

0 = a(x− x0) + b(y − y0) + c(z − z0),

where we have ab
c

 =

v1v2
v3

 =

1
1
1

 .

Similarly, we wish to have the plane pass through the point (1, 1, 1) hence

(x0, y0, z0) = (1, 1, 1).

Thus, our implicit equation for this plane is

0 = (x− 1) + (y − 1) + (z − 1).

We could also give an explicit equation for the plane as the graph of a function. Specif-
ically, we have from the above work

z = −x− y + 3.

Thus, as a graph we would take the plane to be given by the points

(x, y,−x− y + 3).

One could also find two linearly independent vectors perpendicular to ~v and based at
(1, 1, 1) and take their span.

(b) Implicitly, the unit circle is the set of all points a distance 1 from the origin. Thus, we
are looking for (x, y) pairs that satisfy√

x2 + y2 = 1.

Note that we could also write this as

x2 + y2 = 1.

Then, to receive the upper semi circle, we simply neglect values of y < 0 to get the
implicit description

x2 + y2 = 1 with y ∈ [0, 1].
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Explicitly, we can solve for y in terms of x from the previous work to get

y = ±
√

1− x2.

Taking y =
√

1− x2 we know y ≥ 0, and this gives us the upper half of the unit circle
as the graph of a function.

Or, we could parameterize this as a curve to get another implicit description. We know

the curve ~γ(t) =

(
cos(t)
sin(t)

)
lie on the unit circle for all times t. Then, if we restrict

t ∈ [0, π], this gives us just the upper half.

(c) Similarly to (b), the surface of the unit sphere is the set of points a distance 1 from the
origin and so we can write this as an implicit equation

x2 + y2 + z2 = 1.

Explicitly, we could solve for z from the above work to get two graphs

z = ±
√

1− x2 − y2,

which if we combine, gives us an explicit description of the surface of the unit sphere.

One could also arrive at a different explicit description of the unit sphere by using
spherical coordinates. Take φ to the angle from the z-axis of a point on the sphere and
θ to be the polar angle from the xz-plane and we have that the points on the surface of
the unit sphere are given by cos θ sinφ

sin θ sinφ
cosφ

 ,

where θ ∈ [0, 2π) and φ ∈ [−π, π].
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Problem 5. In cylindrical coordinates (either implicitly or explicitly), parameterize the
following objects.

(a) A cylinder with radius 3 and height 5 along with end-caps.

(b) An infinite cone with a vertex angle of π/4.

(c) A helical curve with constant radius 1 and pitch 1.

(d) A hyperboloid of one sheet.

Solution 5. We will find the natural paramaterizations of these shapes are natural (and
thus explicit) in these coordinates.

(a) If we have a cylinder of radius 3, then we have that ρ = 3. If the height is 5, we can
just take z ∈ [0, 5]. The end caps can be described by the points satisfying ρ < 3 and
z = 0 for the bottom cap as well as ρ < 3 and z = 5 for the top cap. This is an explicit
description.

(b) Here, we can take the look at a cone from a side profile and notice that we get ρ = Cz
where C is a constant.

Figure 1: Side profile of a double cone.

If the angle of the vertex is to be π/4, then the slope of the line we see in the side profile
for the ρz-plane should make an angle with the z-axis of π/8. This happens when C = 2,
thus we take ρ = 2z.

(c) If we give a curve in cylindrical coordinates, we want

~γ(t) =

ρ(t)
θ(t)
z(t)

 .
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Since the radius is 1, ρ(t) = 1. Pitch of 1 means that for every full revolution (i.e., θ
increases by 2π), we have z increases by 1. Thus z = θ

2π
. Indeed, this means we are

actually free to choose θ(t) as any increasing function (since we don’t want to double
back). The simplest is choosing θ = t and thus we arrive at ρ(t) = 1, θ(t) = t, z(t) = t

2π
.

Recall that a hyperboloid of one sheet is given by

x2 + y2 − z2 = C,

where C > 0. Note that ρ2 = x2 + y2, and thus

ρ = ±
√
z2 + C.

One can also note that for C = 1, ρ
z

= tanh(t) for t ∈ (−∞,∞) and θ ∈ [0, 2π). This
gives the relationship ρ(t) = cosh(t) and z(t) = sinh(t) which is gives us the relationship
between hyperbolic (co)sine and the trigonometric (co)sine. Namely, this hyperbola cross
section is the unit hyperbola and is closely related to the unit circle (see the simple shift in
the sign of z for the implicit equation). One could then take C = −1, to get the related
two-sheeted hyperboloid.
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