MATH 272, HOMEWORK 6 Due March 24th

Problem 1. Let

$$\vec{\gamma}(t) = \begin{pmatrix} \cos(t)\\ \sin(t)\\ t \end{pmatrix}, \quad f(x,y,z) = x^2 + y^2 - 2z^2, \quad \vec{V}(x,y,z) = \begin{pmatrix} x-y\\ y+x\\ z \end{pmatrix}$$

Compute derivatives of the following composite functions.

- (a) $f(\vec{\gamma}(t))$.
- (b) $\vec{\boldsymbol{V}}(\vec{\boldsymbol{\gamma}}(t)).$
- (c) $f(\vec{\boldsymbol{V}}(x,y,z)).$

Problem 2. Show that for any smooth (more than twice differentiable) fields f(x, y, z) and $\vec{V}(x, y, z)$ that

- (a) $\vec{\nabla} \times (\vec{\nabla} f) = \vec{0};$
- (b) $\vec{\nabla} \cdot \left(\vec{\nabla} \times \vec{V} \right) = 0.$

Problem 3. Let

$$\vec{U}(x,y,z) = \begin{pmatrix} -y \\ x \\ 0 \end{pmatrix}$$
 and $\vec{V}(x,y,z) = \begin{pmatrix} 2x \\ 2y \\ 2z \end{pmatrix}$,

be vector fields.

- (a) Explain why there exists no potential function $\phi(x, y, z)$ for the vector field \vec{U} .
- (b) Explain why there does exist a potential function $\phi(x, y, z)$ for the field \vec{V} .

(c) Compute the potential function for \vec{V} .

Problem 4. Parameterize the following either implicitly or explicitly. In Cartesian coordinates, find the parameterization of the normal vector as well.

- (a) The plane perpendicular to the vector $\vec{v} = \hat{x} + \hat{y} + \hat{z}$ passing through the point (1, 1, 1).
- (b) The upper half of the unit circle in \mathbb{R}^2 .
- (c) The surface of the unit sphere in \mathbb{R}^3 .

Problem 5. In cylindrical coordinates (either implicitly or explicitly), parameterize the following objects.

- (a) A cylinder with radius 3 and height 5 along with end-caps.
- (b) An infinite cone with a vertex angle of $\pi/4$.
- (c) A helical curve with constant radius 1 and pitch 1.
- (d) A hyperboloid of one sheet.