
MATH 272, Homework 5, Solutions
Due March 9th

Problem 1. A rough model of a molecular crystal can be described in the following way.
Take the scalar function

u(x, y) = cos2(x) + cos2(y).

This function u(x, y) describes the potential energy for electrons in the crystal. Electrons
are attracted to the areas with the smallest potential energy and move away from areas of
high potential energy.

(a) Plot this function and include a printout. Notice what this looks like. You can imagine
that each of the low points (well) is where a nucleus is located in the crystal.

(b) Plot the level curves where u(x, y) = 0, u(x, y) = 1
4
, u(x, y) = 1

2
, and u(x, y) = 1 for the

range of values −3π
2
≤ x ≤ 3π

2
and −3π

2
≤ y ≤ 3π

2
.

Picking the constant for the level curve tells you the kinetic energy of the electron you
are looking at. It turns out that electrons (roughly) will orbit along these level curves.
Notice, some level curves bleed into the different troughs of neighboring molecules which
means that electrons of sufficient energy happily flow through the crystal. However,
electrons like to behave a bit differently thanks to their quantum nature!

(c) Find the gradient of this function ~∇u(x, y).

(d) At what point(s) is the gradient zero? Hint: Use your graph of the level curves to help.

Solution 1.

(a) Here is the plot
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(b) Here is the plot of the level curves.
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Figure 1: Contour plot labeled with relevant values. Colors match the colors in the previous
figure.

(c) The gradient is

~∇u(x, y) =

(
−2 cos(x) sin(x)
−2 cos(y) sin(y)

)
.

(d) We want to find where
~∇u(x, y) = ~0.

This gives us two equations to work with:

−2 cos(x) sin(x) = 0, (1)

−2 cos(y) sin(y) = 0. (2)

Note that (1) is zero whenever cos(x) or sin(x) is zero, which happens at x = nπ
2

for all
integers n. Similarly, we have that (2) is zero when y = mπ

2
for all integers m. This gives

us many different solutions in our given range of values.

If we think graphically, these values where the gradient is zero occur at the tops and
bottoms of the peaks and valleys respectively. These are the maxima and minima of the
function u(x, y).

However, not all of these solutions are solutions where the electrons will want to stay
put. We will have to work harder to find out which ones are minimizers of the energy!

2



Problem 2. Let us visualize vector fields using GeoGebra (specifically https://www.geogebra.

org/m/u3xregNW). Plot the following vector fields and print them out.

(a) (Constant wind from the northwest) ~V (x, y) =

 1
−1
0

.

(b) (Two wind fronts meeting) ~U(x, y, z) =

yx
0

.

(c) (Source) ~E(x, y, z) =


x

(x2+y2+z2)3/2
y

(x2+y2+z2)3/2
z

(x2+y2+z2)3/2

.

(d) (Vortex) ~S(x, y, z) =

 −y
x2+y2+z2

x
x2+y2+z2

0

 .

Solution 2.

Figure 2: Plot for ~V (x, y, z).

(a)
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Figure 3: Plot for ~U(x, y, z).

(b)

Figure 4: Plot for ~E(x, y, z).

(c)

4



Figure 5: Plot for ~S(x, y, z).

(d)
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Problem 3. Compute the divergence and curl of the Source and Vortex fields from the
previous problem. What can we say about the divergence and curl of these fields at the
origin?

Solution 3. First, let us take the curl of ~E. We have

~∇× ~E =

∂E3

∂y
− ∂E2

∂z
∂E1

∂z
− ∂E3

∂1
∂E2

∂x
− ∂E1

∂y


=


−3yz

(x2+y2+z2)5/2
− −3yz

(x2+y2+z2)5/2
−3xz

(x2+y2+z2)5/2
− −3xz

(x2+y2+z2)5/2
−3xy

(x2+y2+z2)5/2
− −3xy

(x2+y2+z2)5/2


=

0
0
0

 .

At the origin, this curl is also identically zero. The curl of ~E is simply zero everywhere.
Next, the curl of ~S,

~∇× ~S =

 0− −2xz
(x2+y2+z2)2
2yz

(x2+y2+z2)2
− 0

−x2+y2+z2

(x2+y2+z2)2
− x2−y2+z2

(x2+y2+z2)2


=


2xz

(x2+y2+z2)2
2yz

(x2+y2+z2)2

z2

(x2+y2+z2)2
.

 .

Note that at the origin, we have a discontinuity. Specifically, the curl at the origin will go to
infinity (in each direction) at the origin since the numerator of each component of the curl
is of lesser degree (2) than the denominator (4).

The divergence of ~E is

~∇ · ~E =
∂E1

∂x
+
∂E2

∂y
+
∂E3

∂z

=
−2x2 + y2 + z2

(x2 + y2 + z2)5/2
+

x2 − 2y2 + z2

(x2 + y2 + z2)5/2
+

x2 + y2 − 2z2

(x2 + y2 + z2)5/2

= 0.

It appears that the divergence of this field ~E is zero, however we will see in Problem 5 that
this isn’t entirely true!

Similarly, the divergence of ~S

~∇ · ~S =
2xy

(x2 + y2 + z2)2
+

−2xy

(x2 + y2 + z2)2

= 0.

Once again, this appears to be zero everywhere (including the origin). But one should be
weary of whether or not this is totally true!
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Problem 4. Consider the function

f(x, y) = sin

(
2πx

5

)
sin

(
2πy

5

)
.

comes up when you want to find out how a square shaped drum head will vibrate when hit.

(a) Plot this function on the region Ω given by 0 ≤ x ≤ 5 and 0 ≤ y ≤ 5.

(b) What is the value the function f(x, y) on the boundary of the given region Ω (i.e, when
x = 0, x = 5, y = 0, and y = 5)?

(c) Show that f(x, y) is an eigenfunction of the Laplacian ∆ = ~∇ · ~∇. What is the eigen-
value?

Solution 4.

(a) Here is the plot of the vibrating square drum head:
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(b) When x = 0 we have

f(0, y) = sin

(
2π0

5

)
sin

(
2πy

5

)
= 0.

Similarly, when x = 5 f(5, y) = 0, when y = 0 f(x, 0) = 0, and when y = 5 f(x, 5) = 0.

These are the boundary of the drum head. That is, where the head of the drum is
clamped down.
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(c) We have

∂f

∂x
=

2π

5
cos

(
2πx

5

)
sin

(
2πy

5

)
,

∂2f

∂x2
=
−4π2

25
sin

(
2πx

5

)
sin

(
2πy

5

)
,

∂f

∂y
=

2π

5
sin

(
2πx

5

)
cos

(
2πy

5

)
,

∂2f

∂y2
=
−4π

25
sin

(
2πx

5

)
sin

(
2πy

5

)
.

Then we have

∂2f

∂x2
+
∂2f

∂y2
= −8π2

25
sin

(
2πx

5

)
sin

(
2πy

5

)
= −8π2

25
f(x, y).

So, the way a drum head vibrates is an eigen-problem.
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Problem 5. Consider the following vector field

~E(x, y, z) =


x

(x2+y2+z2)3/2
y

(x2+y2+z2)3/2
z

(x2+y2+z2)3/2

 ,

which models the electric field of an proton (in units of of charge q = 1) placed at the origin.

(a) Show that ~E(x, y, z) = −~∇V (x, y, z) where V (x, y, z) = 1√
x2+y2+z2

. We refer to V (x, y, z)

as the electrostatic potential or voltage.

(b) Let Ω be a box with side lengths two centered at the origin. Compute the total flux of
~E through the surface of the box Σ. That is,∫

Γ

~E(x, y, z) · n̂dΣ.

(c) Does the total flux depend on the size or shape of the box?

(d) Using the provided argument, one can compute∫
Ω

~∇ · ~E(x, y, z)dΩ.

� Compute ~∇ · ~E and note that this is zero everywhere except at (x, y, z) = (0, 0, 0).

� Note that the two integrals in this problem are equal. This is known as the di-
vergence theorem and it is a special case of a more general theorem called Stokes’
theorem which generalizes the fundamental theorem of calculus. Hence, you can
now argue why

~∇ · ~E = 4πδ(x, y, z),

where δ(x, y, z) is the 3-dimensional Dirac delta.

Solution 5. (a) We compute −~∇V ,

−~∇V =

−∂V
∂x

−∂V
∂y

−∂V
∂z


=


x

(x2+y2+z2)3/2
y

(x2+y2+z2)3/2
z

(x2+y2+z2)3/2

 .

(b) This portion requires computing six different (however, symmetric) integrals. One can
reduce the argument down to a single integral via a bit of physical/mathematical reason-

ing. Note that the field ~E is radially symmetric in that the field points radially outward
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from the origin and the strength falls off as we move away from the origin. Fundamen-
tally, this means that each face of the cube receives the same amount of flux through
it.

Picture the situation as follows. We have the cube surface broken up into 6 faces. We
will label these faces as Σ1, Σ2, . . . ,Σ6.

z

x

y

(−1,−1, 1)

(−1,−1,−1)

(1,−1,−1)

(1, 1,−1)

(1, 1, 1)

(−1, 1, 1)

(1,−1, 1)

Σ2

Σ1

Σ3

One can take Σ4, Σ5, and Σ6 to be the faces opposite to Σ1, Σ2 and Σ3 respectively.
Each face then has a unique outward normal vector which we can denote by n̂Σj

for the
face Σj.
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z

x

y

n̂Σ1 = ẑ

n̂Σ3 = x̂

n̂Σ2 = ŷ

Thus, our integral over the cubic surface Σ is given by

x

Σ

~E · dΣ =
6∑
j=1

x

Σj

~E · n̂Σj
dΣj.

By the symmetry argument before, we can simplify this further as
x

Σ

~E · n̂dΣ = 6
x

Σ1

~E · n̂Σ1dΣ1.

Now, we can evaluate this integral

6
x

Σ1

~E · n̂Σ1dΣ1 =

∫ 1

−1

∫ 1

−1

~E(x, y, 1) · ẑdxdy

= 6

∫ 1

−1

∫ 1

−1

1

(x2 + y2 + 1)3/2
dxdy

= 6

∫ 1

−1

2

(y2 + 1)
√
y2 + 2

dy

= 6
2π

3
= 4π.

Note that the divergence of ~E is zero everywhere aside from the origin. Hence, the only
possible source of flux comes from the origin and our previous argument discussed the sym-
metry of this field. So long as we integrate in a surface that encloses the origin, we will have
the same answer. This leads us to (d).
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We have already computed ~∇ · ~E and noted this in an earlier problem. It’s now very
physically reasonable to suspect that we have the following identity∫

Ω

~∇ · ~EdΩ =

∫
Σ

~E · n̂dΣ,

since the amount of “source behavior” in the region Ω should directly correspond to the
flux that will pass through the boundary. To picture this literally, if we pump in water at
(0, 0, 0), we know how much water we pumped in by seeing how much flows through any
surface surrounding the origin.

Thus, our argument is that ∫
Ω

~∇ · ~EdΩ = 4π.

Now, ~∇ · ~E is zero aside from at (x, y, z) = (0, 0, 0), and thus ~∇ · ~E must mimic the Dirac
delta by being infinite at the origin (which we observed previously). Hence, we conclude
that

~∇ · ~E = 4πδ(x, y, z).

Furthermore, if we relate this to the Maxwell equation for the electric field ~E due to a charge
distribution ρ(x, y, z), i.e.,

~∇ · ~E = ρ/ε0,

we see that a point charge corresponds to a distribution δ(x, y, z) times some constant.
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