
MATH 272, Homework 3, Solutions
Due February 17th

Problem 1. Compute the Fourier series for the following functions on the interval [0, L].
Then plot your result (for N = 1, 50, 100, 500) compared to the original function. What do
you notice if you plot the Fourier series outside the range of [0, L]?

(a) f(x) = 1
2

cos
(
2πx
L

)
+ sin

(−4πx
L

)
.

(b) sin
(
3πx
L

)
.

(c) δ(x− L/2).

Solution 1.

(a) Here, we can use orthogonality to greatly reduce the amount of work we must do. Notice
as well that our function is essentially written as a Fourier series. We have

an =

〈
f,
√

2 cos

(
2nπx

L

)〉
=

〈
1

2
cos

(
2πx

L

)
+ sin

(
−4πx

L

)
,
√

2 cos

(
2nπx

L

)〉
=

〈
1

2
cos

(
2πx

L

)
,
√

2 cos

(
2nπx

L

)〉
︸ ︷︷ ︸

= 0 unless n=1

+

〈
sin

(
−4πx

L

)
,
√

2 cos

(
2nπx

L

)〉
︸ ︷︷ ︸

= 0 always

.

Hence, we have that the only nonzero an term is a1 and we have

a1 =

〈
1

2
cos

(
2πx

L

)
,
√

2 cos

(
2nπx

L

)〉
=

1

2
√

2

〈√
2 cos

(
2nπx

L

)
,
√

2 cos

(
2nπx

L

)〉
=

1

2
√

2
.

An analogous argument shows that f(x) is orthogonal to 1 which shows that a0 = 0 as
well. Similarly, another analogous argument shows that the only nonzero bn term is b2
since sin(−x) = − sin(x). So we have that

b2 =
−1√

2
.

Hence, we have found all of our coefficients for the Fourier series.
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(b) First, let’s compute

a0 =

〈
sin

(
3πx

L

)
, 1

〉
=

1

L

∫ L

0

sin

(
3πx

L

)
dx

=
2

3π
.

Next, we can compute

an =

〈
sin

(
3πx

L

)
,
√

2 cos

(
2nπx

L

)〉
=

1

L

∫ L

0

sin

(
3πx

L

)√
2 cos

(
2nπx

L

)
dx

=
6
√

2

9π − 4πn2
.

Finally, we compute

bn =

〈
sin

(
3πx

L

)
,
√

2 sin

(
2nπx

L

)〉
= 0 by orthogonality.

Thus, our Fourier series is given by

sin

(
3πx

L

)
=

2

3π
+
∞∑
n=1

12

9π − 4πn2
cos

(
2nπx

L

)
.

(a) Approximating sin
(
3πx
L

)
in black. (b) Approximating sin

(
3πx
L

)
in black.

(c) First, we compute

a0 = 〈δ(x− L/2), 1〉 =
1

L

∫ L

0

δ(x− L/2)dx =
1

L
.
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Then, we have

an =

〈
δ(x− L/2),

√
2 cos

(
2nπx

L

)〉
=

1

L

∫ L

0

δ(x− L/2)
√

2 cos

(
2nπx

L

)
dx

=
√

2L cos(nπ)

= (−1)n
√

2

L
.

Finally, we compute

bn =

〈
δ(x− L/2),

√
2 sin

(
2nπx

L

)〉
=

1

L

∫ L

0

δ(x− L/2)
√

2 sin

(
2nπx

L

)
dx

=

√
2

L
sin(nπ)

= 0.

Hence, our Fourier series is given by

δ(x− L/2)) =
1

L
+
∞∑
n=1

(−1)n
2

L
cos

(
2nπx

L

)
.

3



(a) N = 1 approximation to δ(x−L/2).
(b) N = 50 approximation to δ(x −
L/2).

(c) N = 100 approximation to δ(x −
L/2).

(d) N = 500 approximation to δ(x −
L/2).
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Problem 2. Consider a function f(x) that describes the height of a rubber string with rest
length L. We can attach the ends of the string at x = 0 and x = L by requiring that
f(0) = f(L) = 0. Then, one can subject the string to an external force g(x) and find the
profile of the string by solving

− d2

dx2
f(x) = g(x).

(a) Let g(x) = δ(x−L/2) and let f(x) be given by some Fourier series. Using the equation
above, solve for the coefficients of the Fourier series for f(x).

(b) Plot the Fourier series for f(x) for N = 1, 5, 50.

This is an extremely important to solve. The fact that we can determine a solution f(x)
where the external force is the Dirac delta function means that we have the ability to deter-
mine a the deformation of a string from a point force.

Solution 2.

(a) Here we let f(x) be written as an arbitrary Fourier series by

f(x) = a0 +
∞∑
n=1

an
√

2 cos

(
2nπx

L

)
+
∞∑
n=1

bn
√

2 sin

(
2nπx

L

)
.

Then we can put

− d2

dx2
f(x) =

4n2π2

L2

(
∞∑
n=1

an
√

2 cos

(
2nπx

L

)
+
∞∑
n=1

bn
√

2 sin

(
2nπx

L

))
.

Setting the left hand side of the ODE equal to the right, we have

− d2

dx2
f(x) = g(x)

4n2π2

L2

(
∞∑
n=1

an
√

2 cos

(
2nπx

L

)
+
∞∑
n=1

bn
√

2 sin

(
2nπx

L

))
=

1

L
+
∞∑
n=1

(−1)n
2

L
cos

(
2nπx

L

)
.

Hence, we just need to determine the coefficients a0, an, and bn for our function f(x).
It’s clear to see that the bn terms for f(x) must be zero. Solving for the an terms, we
find

4n2π2

L2
an = (−1)n

2√
2L
,

which yields

an = (−1)n
L

2
√

2n2π2
.

At this point, we have that

f(x) = a0 +
∞∑
n=1

(−1)n
L

2n2π2
cos

(
2nπx

L

)
.
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We can determine a0 by inforcing our boundary conditions. Namely, we take

0 = f(0) = a0 +
∞∑
n=1

(−1)n
L

2n2π2

= a0 −
L

24
,

where I used WolframAlpha to evaluate the infinite series above. This means that
a0 = L

24
. Thus, we arrive at

f(x) =
L

24
+
∞∑
n=1

(−1)n
L

2n2π2
cos

(
2nπx

L

)
.

(a) N = 1 approximation to
the differential equation..

(b) N = 5 approximation to
the differential equation..

(c) N = 50 approximation to
the differential equation..

6



Problem 3. Compute the following Fourier transforms (using a table or WolframAlpha if
need be).

(a) sin(3πx).

(b) e
−x2

2 .

(c) δ(x).

Solution 3.

(a) To compute the Fourier transform, one could use a table. However, we can take

F [sin(3πx)] =

∫ ∞
−∞

sin(3πx)e−i2πkxdx.

The techniques used to compute this integral by hand are found in complex analysis.
Specifically, one uses the fact that sin(3πx) is an analytic function on C as well as the
method of contour integration (seen here: https://en.wikipedia.org/wiki/Contour_
integration). This is not a topic for our class (though we will learn how to integrate
along curves).

Anyways, computing this Fourier transform yields

F [sin(3πx)] =
δ
(
k − 3

2

)
− δ

(
k + 3

2

)
2i

.

Here, I used a table to compute this (as WolframAlpha claims the integral does not
converge).

(b) Again, we want to compute

F
[
e

−x2

2

]
=

∫ ∞
−∞

e
−x2

2 e−i2πkxdx.

I was able to compute this using WolframAlpha by entering

integrate[e^(-x^2/2)e^{-i2*pi*k*x},{x,-infty,infty}]

This yields

F
[
e

−x2

2

]
=
√

2πe−2π
2k2 .

One thing to note here is that the Fourier transform of a Gaussian is a Gaussian!

(c) Since, in some sense, the Dirac delta is a Gaussian function (with a variance of zero), we
expect to get another type of Gaussian out as well. Let’s see what happens. We take

F [δ(x)] =

∫ ∞
−∞

δ(x)e−i2πkxdx = 1.

The constant 1 function is much like a Gaussian with an infinite variance! This is maybe
a “handwavy” way to look at this.
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Problem 4. A common application for the Fourier transform is to solve differential equations
whose domain is time t ∈ [0,∞). We can model how a point x on a rubber string oscillates
over time consider the differential equation

u′′(t) + v2u(t) = 0,

with initial conditions u(0) = L and u′(0) = 0. Here u(t) is the displacement of the string at
position x with the initial conditions describing the string being pulled tight at time t = 0.

x

x = 0 x = L

u(t)

To solve this equation, we could use use methods we learned previously, or apply the
Fourier transform to the whole equation by

F
[
u′′(t) + v2u(t)

]
= F [0] .

(a) Compute the Fourier transform above.

(b) One should then have a new equation

−4π2k2û(k) + v2û(k) = 0.

Solve this new equation for k.

(c) One should have two values k1 and k2 from the work in (b). This corresponds to the
solution

û(k) = δ(k − k1) and û(k) = δ(k − k2).

Compute the inverse Fourier transform of the two delta functions. A linear combination
of these correspond to your solution u(t).

Solution 4.

(a) We have that the Fourier transformed equation is given by

−4π2k2û(k) + v2û(k) = 0,

since the Fourier transform converts differentiation into multiplication.
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(b) Indeed, we have this equation. If we solve this equation for k, we have

(−4π2k2 + v2)û(k) = 0,

which yields

k = ±|v|
2π
.

(c) Put k1 = − |v|
2π

and k2 = |v|
2π

. Thus, we get

û(k) = δ

(
k +
|v|
2π

)
and û(k) = δ

(
k − |v|

2π

)
.

Then we have that

F
[
δ

(
k +
|v|
2π

)]
= e−ivt

and

F
[
δ

(
k − |v|

2π

)]
= eivt.

If we take a linear combination of these solutions we arrive at

u(t) = C1e
ivt + C2e

−ivt,

which is the solution we have found for the harmonic oscillator equation before!
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