
MATH 272, Homework 2, Solutions
Due February 10th

Linear operators play a fundamental role in quantum mechanics. Namely, we compute
probabilities related to certain operators in order to gain insight on the problem at hand.
Throughout this assignment we will see some of the role of operators in this theory.

For the following problems, we will be referring to the free particle in the 1-dimensional
box on the region [0, L]. Recall the normalized states

ψn(x) =

√
2

L
sin
(nπx
L

)
,

and the Hermitian inner product

〈Ψ,Φ〉 =

∫ L

0

Ψ(x)Φ∗(x)dx.

Throughout this assignment you should use orthonormality as much as possible to sim-
plify your computations. This will drastically decrease the amount of work you have to
do.

Problem 1. When making a measurement of the position of the particle, we will use the
position operator x. This is the same as the variable x in the original problem statement,
but it is also an operator!

(a) Show that the position operator x is Hermitian.

(b) We can compute the expected position of a particle with wavefunction Ψ(x) by comput-
ing

E[x] = 〈Ψ, xΨ〉 .

Let Ψ(x) = 1√
2
ψ1(x)+ 1√

2
ψ2(x), compute E[x]. This value E[x] tells you where we expect

to find the particle on average.

Solution 1. (a) Let Ψ(x) and Φ(x) be arbitrary functions. Then we have

〈xΨ,Φ〉 =

∫ L

0

xΨ(x)Φ∗(x)dx

=

∫ L

0

Ψ(x) (xΦ(x))∗ dx since x is real valued

= 〈Ψ, xΦ〉 .

Thus we have that the position operator is Hermitian.
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(b) We can compute the expected value by

E[x] = 〈Ψ, xΨ〉 =

∫ L

0

Ψ(x)x∗Ψ(x)dx

=

∫ L

0

x

(
1√
2
ψ1(x) +

1√
2
ψ2(x)

)2

dx

=

∫ L

0

x

(
1

2
ψ2
1(x) + ψ1(x)ψ2(x) +

1

2
ψ2
2(x)

)
dx.

This can be split into three separate integrals. First,∫ L

0

x

2
ψ2
1(x)dx =

∫ L

0

x

L
sin2

(πx
L

)
dx =

L

4
.

Second, ∫ L

0

xψ1(x)ψ2(x)dx =

∫ L

0

2x

L
sin
(πx
L

)
sin

(
2πx

L

)
dx = −16L

9π2
.

Finally, ∫ L

0

xψ2
2(x)dx =

∫ L

0

x

L
sin2

(
2πx

L

)
dx =

L

4
.

Thus, we can add these all together to get

E[x] =
L

2
− 16L

9π2
≈ .32L .
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Problem 2. In fact, any real valued function V (x) of the position operator x is also Her-
mitian. Make a quick argument on why this must be true.

Solution 2. If V (x) is real valued, then V ∗(x) = V (x). Hence, we have

〈VΨ,Φ〉 =

∫ L

0

V (x)Ψ(x)Φ∗(x)dx =

∫ L

0

Ψ(x) (V (x)Φ(x))∗ dx = 〈Ψ, V Φ〉 .
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Problem 3. Another related operator is the momentum operator p̂ = −i~ d
dx

. Using inte-
gration by parts, show that this operator is Hermitian.

Solution 3. We have

〈p̂Ψ,Φ〉 =

∫ L

0

(
−i~dΨ

dx

)
Φ∗(x)dx

= −i~Ψ(x)Φ∗(x)|L0 +

∫ L

0

i~Ψ(x)
dΦ∗

dx
dx by integration by parts.

Note now that the boundary conditions require both Ψ(0) = Ψ(L) = 0 and Φ(0) = Φ(L) = 0,
since we are working over the space of solutions to the particle in the 1-dimensional box.
Hence, we have

〈p̂Ψ,Φ〉 =

∫ L

0

i~Ψ(x)
dΦ∗

dx
dx

=

∫ L

0

Ψ(x)

(
−i~dΦ

dx

)∗
dx

= 〈Ψ, p̂Φ〉 .

Thus, p̂ is Hermitian.
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Problem 4. We can always take products, sums, and scalar multiples of operators to build
new operators. For example, in classical physics, we have the kinetic energy

T =
1

2
m~v · ~v,

where ~v is the velocity. In 1-dimension, this reduces to the familiar 1
2
mv2. However, we can

also rewrite this 1-dimensional equation using the momentum p = mv which gives us the
kinetic energy

T =
p2

2m
.

Hence, we can define the quantum kinetic energy operator

T̂ =
p̂2

2m
.

(a) Show that T̂ = −~2
2m

d2

dx2
.

(b) Make a quick argument as to why this kinetic energy operator T̂ is Hermitian.

(c) What are the energy eigenvalues E1 and E2 for the states ψ1(x) and ψ2(x)?

(d) Again, letting Ψ(x) = 1√
2
ψ1(x) + 1√

2
ψ2(x), compute E[T̂ ]. The expected value E[T̂ ] tells

us what the observed energy will be on average. Yet, any time we measure a system we
will find that energy must be one of the energy eigenvalues. Thus, for this wave function,
this expected value should be the average between E1 and E2 which means that half the
time we will measure the energy to be E1 and half the time it will be E2.

Solution 4.

(a) We have p̂ = −i~ d
dx

. Then, we construct T̂ by

T̂ =
p̂2

2m
=

(
−i~ d

dx

)2
2m

=
−~2

2m

d2

dx2
.

(b) We have 〈
T̂Ψ,Φ

〉
=

〈
p̂2

2m
Ψ,Φ

〉
=

〈
p̂2Ψ,

1

2m
Φ

〉
since

1

2m
is a real constant

=

〈
p̂Ψ,

p̂

2m
Φ

〉
since p̂ is Hermitian

=

〈
Ψ,

p̂2

2m
Φ

〉
=
〈

Ψ, T̂Φ
〉
.

Thus, T̂ is Hermitian.
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(c) We can determine E1 and E2 from the eigenvalue equation

T̂Ψ(x) = EΨ(x).

Specifically, we have
T̂ψn(x) = Enψn(x).

So we take
−~2

2m

d2

dx2

√
2

L
sin
(nπx
L

)
=

~2

2m

n2π2

L2

√
2

L
sin
(nπx
L

)
,

which yields

En =
~2n2π2

2mL2
.

Thus, plugging in 1 and 2, we get

E1 =
~2π2

2mL2
E2 =

4~2π2

2mL2
.

(d) Now, most of the work has been done for us, and the rest here will be taken care of by
orthogonality. We take〈

Ψ, T̂Ψ
〉

=

〈
1√
2
ψ1 +

1√
2
ψ2,

E1√
2
ψ1 +

E2√
2
ψ2

〉
=
E1

2
〈ψ1, ψ1〉+

E1

2
〈ψ2, ψ1〉+

E2

2
〈ψ1, ψ2〉+

E2

2
〈ψ2, ψ2〉

=
E1 + E2

2
.
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Problem 5. If we are given a potential (energy) V (x) and the kinetic energy T , we can take
their sum and form the total energy T + V (x) which we call the Hamiltonian. Thus, in the
quantum realm, we create the Hamiltonian operator Ĥ by

Ĥ = T̂ + V (x).

(a) Show that the Hamiltonian operator is Hermitian. Hint: you have already done the
necessary work for this. You just need to combine it and show a few steps here.

(b) The spectrum of the Hamiltonian tells us the possible energy eigenvalues of a quantum
system. Thus, we can compute the spectrum (in this case) by solving the eigenvalue
equation

ĤΨ(x) = EΨ(x).

Show that with V (x) = 0 in [0, L] and the boundary conditions Ψ(0) = Ψ(L) = 0 that
the spectrum of the Hamiltonian operator is discrete. Hint: We have done this exact
problem in the notes from Math 271. Feel free to use that!

Solution 5. (a) We know that both T̂ and V (x) are Hermitian. Thus, we take〈
(T̂ + V )Ψ,Φ

〉
=
〈
T̂Ψ,Φ

〉
+ 〈VΨ,Φ〉 =

〈
Ψ, T̂Φ

〉
+ 〈Ψ, V Φ〉 =

〈
Ψ, (T̂ + V )Φ

〉
(b) Since V (x) = 0 in [0, L], we have that

Ĥ = T̂ = − ~2

2m

d2

dx2
.

Hence, we are solving the equation

− ~2

2m

d2

dx2
Ψ(x) = EΨ(x).

Let ω2 = 2mE
~2 , and we have

Ψ′′(x) + ω2Ψ(x) = 0,

which is the harmonic oscillator equation. Thus, our solution is

Ψ(x) = C1e
iωx + C2e

−iωx.

Now, if we apply the boundary conditions, we have

0 = Ψ(0) = C1 + C2,

thus C1 = −C2. By Euler’s formula, we can take

C1e
iωx − C1e

−iωx = C sin(ωx).

Now, our other boundary condition states

0 = Ψ(L) = C sin(ωL),
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Thus we must have ω = nπ
L

for an integer n. Now, this means

2mE

~2
= ω2 =

n2π2

L2
,

and we can solve for E to get

E =
n2π2~2

2mL2
,

which shows that the spectrum of Ĥ is discrete.
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