MATH 271, QUIZ 1 Due September 3^{RD} at the end of class

Instructions You are allowed a textbook, homework, notes, worksheets, material on our Canvas page, but no other online resources (including calculators or WolframAlpha) for this quiz. **Do not discuss any problem any other person.** All of your solutions should be easily identifiable and supporting work must be shown. Ambiguous or illegible answers will not be counted as correct.

THERE ARE 5 TOTAL PROBLEMS.

Problem 1. (3 pts.) Given two complex numbers $z_1 = 1 - i$ and $z_2 = -2 + i$, draw a picture showing how to find the sum $z_1 + z_2$. Also, draw a picture of $-z_1$ and $2z_1$ and explain what these scaling operations do to a complex number.

Problem 2. (3 pts.) Let $z_1 = e^{i\frac{\pi}{4}}$ and $z_2 = e^{-i\frac{\pi}{2}}$. Graph z_1, z_2 , and the product z_1z_2 in the \mathbb{C} -plane. *Hint: recall that there are* 2π *radians in a full circle.*

Problem 3. Consider the function $x(t) = e^{it}$.

- (a) (2 pts.) Explain why this function is periodic with period 2π .
- (b) (2 pts.) What is the real part of x?
- (c) (2 pts.) Show that x is a solution to the ODE: x'' = -x.

Problem 4. (4 pts.) Explain what it means to be a general solution to an ODE. Explain what it means to be a particular solution to an initial value problem. What are the key differences between general and particular solutions?

Problem 5. (3 pts.) (Hooke's law) Write down an initial value problem based on the following statement.

"The rate of change of the rate of change of position of a mass is proportional to the position but in the opposite direction."