
Project Math 271

MATH 271, Project
Due December 18th

Due Date

The assignment must be turned in via Canvas by Friday December 18th, 2020, by 11:59PM mountain time.

Requirements

� You may work together, but you must submit your own individual work.

� You are to type out your work to this assignment using a program like Microsoft Word or LATEX. If
you use a program like Microsoft Word, use the equation editor for any mathematical symbols you use.

� Save your document as a PDF as only PDF files will be accepted. Make sure your formatting comes
out correctly when you save as a PDF! Microsoft Word has a way of making this more challenging
than it needs to be.

� For full credit, explain your work along the way and use consistent notation. Though problems may
not ask for much, a short and complete explanation is expected.

Just as a remark, words written in blue are emphasized since they are either definitions or common terms
used in mathematics that I may not define explicitly here. Also, there are 15 total problems.

1 Introduction

Before doing anything, I’m opening this up to a problem for you.

Problem 1

In chemistry or in your area of research interest, is group theory used? If so, what are the applications
of group theory? Do those applications have any interest to you?

Let us begin this with a motivating question rather than a mathematical definition.

Question: Given a set S, possibly with some structure, what is the set of symmetries G of this set?

Nature loves symmetry. If you spend any time looking at the world around you, you will find highly
symmetric objects. Some of these objects are beautiful and coveted by us humans.
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We now need to be precise. What exactly does it mean to be a symmetry of a set? Physically, a symmetry
is something we see with objects. A concrete example would be a square sheet of paper. If we lay a square
sheet of paper on a desk, you could leave the room, another person could move this paper, and if you came
back, you would not notice this change. This is a symmetry. If the move remains undocumented, no one can
tell the difference. As a scientist, you would like to document these changes so you prepare the experiment
better. You label the corners of the square A, B, C, and D. Then, you place a pin in the center of the square
at the origin 0 so that the paper cannot be picked up. Then you could only record the following symmetries.

One can imagine a situation with a more complicated object. Some objects may be too complicated to
have much symmetry. There seems to be a balance here. In the example with the square, we restricted
ourselves a bit. By placing a pin at 0, we forbid the paper from lifting, but did this lose us some extra
symmetries of flipping the paper? Sure. If instead, we made a pentagon, do we expect more symmetries
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or less? A triangle? What about a rectangle? What is the right way to encode symmetries of all objects
mathematically such that these ideas of restrictions and generalizations behave properly?

Sticking with pinned down square, let’s notice some things. Any rotation can be applied after any
rotation which means we can compose symmetries. We can invert any symmetry by rotating in the
opposite direction. In fact, with this example, we can generate all possible symmetries by rotating the
square by π/2 in the counterclockwise direction. The last fact is rather special.

Now, our goal is to make all of this mathematical. You may ask why, and that’s a fair question. The
reason why is to give ourselves a well-defined toolbox to tackle any problem where symmetry is involved.
Mathematics provides us truth by logic. We may be able to realize even more powerful statements, classify
symmetries, and utilize them in areas such as physics, chemistry, biology, computer science, or even art.

2 Mathematics of Symmetries

As we began, fix any set S. This set may contain or represent whatever it is you need at the moment. For
now, we let it be arbitrary. An action on this set is given by a function f : S → S. A symmetry does not
distort the set, so we cannot do anything malicious such as delete members under some symmetry operation.
That greatly restricts our choice of such actions.

Definition 1. A symmetry action on a set S is a function f : S → S such that f is one-to-one
(injective) and onto (surjective). Equivalently, an injective and surjective function is called a bijection.

Example 1. Let S = {A,B,C}, then there are 3! = 6 symmetry actions of S. That is, this is the
number of ways to rearrange a set of size S (can you prove this?). We can define a bijective function
f : S → S by choosing what it does to each input, so we will write f(A,B,C) all at once. Here is the
list, in no particular order:

f0(A,B,C) = (A,B,C)

f1(A,B,C) = (B,A,C)

f2(A,B,C) = (A,C,B)

f3(A,B,C) = (C,B,A)

f4(A,B,C) = (B,C,A)

f5(A,B,C) = (C,A,B)

The set of all symmetry actions of S is the set

G = {f0, f1, f2, f3, f4, f5}.

This set G is well known. It is typically called the symmetric group on 3-elements and we use
the notation S3 := G.

For sake of clarity, a non-example would be a function g : S → S whereby

g(A,B,C) = (A,A,C).

This function is not injective since we have that A 7→ A and B 7→ A and it is not surjective since B
is not in the image of g.

This set S in example 1 was given no additional structure like the geometry we imposed with the square.
In that case, the geometry dictated that we must take more care when speaking of symmetries. We even
pinned the square down and reduced the number of symmetries further. Let’s investigate this.

Example 2. To model our points of a square, let us work with the square in the complex plane C
for sake of ease. Let S = {1, i,−1,−i} ⊂ C be the vertices of the square. Then, all valid rotational
symmetry actions must be integer copies of nπ

2 where rotations of S are given by multiplication by
ein

π
2 . For example, take n = 1, then ei

π
2 = i. Let fπ

2
: S → S be given by

fπ
2
(s) = is.
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Then,

fπ
2
(1) = i

fπ
2
(i) = −1

fπ
2
(−1) = −i

fπ
2
(−i) = 1.

Using this notation, we can realize that f0 = f2π, so the valid choices are n = 0, 1, 2, 3. That is,
rotation by 0, π/2, π, and 3π/2. The set of symmetry actions is

G = {f0, fπ
2
, fπ, f 3π

2
}.

Amazingly, this set G corresponds to the set S itself since fπ
2
is just multiplication by i. What I mean

is that,
i2 = −1, i3 = −i, i4 = 1, i5 = i

and just by taking powers of i we generated the set S. Furthermore, you may recall that this set S
are the set of roots to the equation

z4 = 1,

otherwise called the 4th roots of unity.

Even in the previous example it becomes apparent that there will be more than one way to address
symmetries. Sometimes the underlying set itself contains enough information to build its own symmetries.
In other words, we may not need to think of functions on the set for every example. However, the next
example will show us that sometimes we have to and it depends on the set we start with.

Example 3. Perhaps it is easier to think of points of a square as vectors in R2. This is no different
than using C, but this goes to show that there is more than one way to represent symmetries but
they will always reduce to symmetry actions on a set. Let ê1, ê2 be the standard orthonormal basis
for R2 and define the set

S = {ê1, ê2,−ê1,−ê2} .

Then the linear transformation J : R2 → R2 given by J(ê1) = ê2 and J(ê2) = −ê1 is a symmetry
action of this set which corresponds to rotation by π/2 in the counterclockwise direction. You have
shown in your homework that this J corresponds to multiplication by i, so this should not be a
surprise.

Using the fact that rotation by π/2 generates all possible rotations of the square, we have

G = {I, J, J2, J3},

where I is the identity transformation. You can note as well that J2 = −I and J3 = −J , if you’d
like.

We also built a way to work with matrices as linear transformations for which we have

[J ] =

(
0 −1
1 0

)
in the standard orthonormal basis. This is another representation, and you can show using the same
homework problems that [J ]2 = −[I], [J ]3 = −[J ] and [J ]4 = [I]. In fact, the notation with the
brackets was just a method of converting data. Applying the brackets [] to J just yields the matrix
for J in the standard basis. To that end, we could have written [J2] = [J ]2 all along.

These past two examples have been given in terms of concrete sets whose objects we have an inherent
understanding of. Complex numbers are points in a plane as vectors in R2 are arrows in a plane based at
the origin. Finally, we consider the same underlying symmetries but from the perspective of an abstract
concept called a presentation .
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Example 4. Define the following: Let G be a set containing g and let G act on itself via a binary
operation G×G → G which we write as concatenation. That is, given g, h ∈ G we have (g, h) 7→ gh
is some potentially different element in g. This is no different to how we write xy as a product when
x, y ∈ R.

Then we define gg = g2 and add in the additional relation that g4 = e. This e is called the
identity and we have for any g ∈ G that eg = ge = g. Then,

G = {e, g, g2, g3}.

This looks no different than example 3 as we have replaced J with g. But, with this set G, we have
assumed no extra structure aside from the relation g4 = e. In fact, we write this succinctly as

G := ⟨g | g4 = e⟩

which is read “G is presented as the group generated by the element g with the relation that g4 is
the identity element e”. This object G is also well known. Usually, it is called the cyclic group of
order 4 and is denoted by C4 := G.

3 Groups

Though examples 2 to 4 represent the symmetries of the square using different structures, we would like to
think of these as models of the same underlying symmetry principle. This is a big motivation for a more
rigorous mathematical interpretation. example 4 turns out to be the way to go.

Definition 2. Let G be a set. Then G is a group if the following are satisfied.

i. G has an associative binary operation G × G → G. That is, given g, h, p ∈ G, (gh)p = g(hp) = ghp.
Here we are writing the product as concatenation.

ii. There exists an identity element e ∈ G such that for all g ∈ G, eg = ge = g.

iii. For all g ∈ G, there exists g−1 so that gg−1 = g−1g = e.

Problem 2

Show that the examples before are groups.

Problem 3: Dihedral group

The full symmetries of the square are captured by the dihedral group D4 (sometimes written D8). This
group is presented by

D4 = ⟨r, s | r4 = e, s2 = e⟩.
This again means that we can write the whole group using the elements r and s subject to the relation-
ships that r4 = e is the identity and s2 = e.
The r represents rotation and s represents the action of taking the square sheet of paper and flipping it
over upside down. These are indeed all the possible symmetries of the square, and in general Dn is the
set of symmetries of a regular n-gon.
We can represent this group by matrices in the following way. Let

[r] =

(
cos π

2 − sin π
2

sin π
2 cos π

2

)
and [s] =

(
1 0
0 −1

)
.

(a) Draw the action that [r] takes on the set of vertices of the square S = {ê1, ê2,−ê1,−ê2}.

(b) Draw the action that [s] takes on S as well.
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(c) Show that [r]4 = [I] is the identity.

(d) Show that [s]2 = [I].

(e) Show that flipping, rotating by π/2 in the counterclockwise direction , then flipping again yields a
rotation by π/2 in the clockwise direction. That is, show [s][r][s] = [r]−1.

The square has symmetries given by D4, but if pin down the square sheet of paper at the center of mass,
we remove the ability to flip and hence remove the generator s completely. Thus, we are left with the group
C4 which is presented by

C4 = ⟨r | r4 = e⟩.
It is clear that the symmetries of C4 are contained in D4 so C4 ⊂ D4 is a subset. If we distort the square
into a rectangle and keep the center of mass pinned down, we have destroyed two symmetry actions. In the
same vein, we should be left with an even small group. That smaller group is the Klein 4-group V4 which
we will see later Remembering that S4 was the set of permutations of a set of size 4, we can remark that
V4 ⊂ C4 ⊂ D4 ⊂ S4. This nested sequence of subsets actually has more structure.

Looking back at the rotations in R2, for example, leaves us only with the ability to rotate by π which
corresponds to J2 = −I or not rotate at all which is given by the linear map I. So this new set of symmetries
is H = {I,−I}. Again, notice that weakening the geometry to a less symmetric object weakened the group
G to a subset H. In this case, this set H is also a group since I is the identity, function composition is
associative, and (−I)−1 = (−I). Hence we have a definition:

Definition 3. Let G be a group and H be a subset. If for all h1, h2 ∈ H we have h1h2 ∈ H, then H
is a subgroup.

Let’s dial it back a bit to more familiar territory. Groups are not new to us. We have seen so many in
our lives and used similar language, we just haven’t yet brought it all together. Let’s do some examples.

Example 5. Consider the group G = (R,+) which is the set of real numbers R and the binary
operation is addition. This is indeed a group. Take x, y ∈ R, then the binary operation R × R → R
is written formally by (x, y) 7→ x + y. The operation is associative since if we had z ∈ R as well,
(x+y)+z = x+(y+z) = x+y+z. The identity element we write as 0 ∈ R since 0+x = x+0 = x. Lastly,
the inverse x−1 must satisfy x−1 + x = 0 and we typically just write x−1 = −x since x + (−x) = 0.
This can be a bit confusing since you may want to think of x−1 = 1

x , but we have no notion of division
in this group – the only operation is addition! Furthermore, this group is a bit more special. We
know that x + y = y + x so the operation is commutative. In this case we refer to a commutative
group as abelian after the mathematician Niels Henrik Abel.

Now, Consider the elements 1 and −1. These elements are a subset of G and are inverse to each
other. If we consider the set generated by addition of these two elements

H = ⟨1,−1⟩

then H is a subgroup with the same operation as G. Just for example, we could take

1 + (−1) = 0 ∈ H, 1 + 1 = 2 ∈ H, (−1) + (−1) = −2 ∈ H,

1 + 1 + · · ·+ 1︸ ︷︷ ︸
n times

= n ∈ H, (−1) + (−1) + · · ·+ (−1)︸ ︷︷ ︸
n-times

= −n ∈ H.

which shows us that H = Z is the set of integers and is a group under addition. So we see that Z ⊂ R
is a subgroup!

Problem 4: Vector Spaces as Groups

Show Rn is a group and show that a subspace is a subgroup. Show that there exists a subgroup that is
not a subspace. Hint: think about the example with Z before.
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3.1 Maps between groups

Just as in linear algebra, all of the content is enriched once we add functions between our objects. Linear
algebra had linear maps T : V → W between the vector spaces V and W . This type of map was chosen as
it does something special: it respects the structure of subspaces. That is, if U ⊂ V is a subspace of V , then
T (U) ⊂ W is a subspace of W , this subspace T (U) we called the image of U under T . Furthermore, these
maps had associated sets we called kernels and moreover these kernels were actually subspaces. Algebra
always wants to respect special substructures when possible, and our theory for groups should do the same.

Changing gear, now our objects will will be groups and the proper notion of functions will respect the
structure of the groups. In particular, given a map φ : G → H, if P ⊂ G is a subgroup, then the image of
the subgroup φ(P ) ⊂ H should be a subgroup of H.

Definition 4. Let G and H be groups, then a a map φ : G → H is a homomorphism if for any
g1, g2 ∈ G we have

φ(g1g2) = φ(g1)φ(g2). (1)

And, following our steps in linear algebra, we may as well define the following two notions.

Definition 5. Let φ : G → H be a homomorphism and let e ∈ H be the identity of H. Then

i. The kernel of φ is the set of all g ∈ G that map to the identity of H

kerφ = {g ∈ G | φ(g) = e}.

ii. The image of φ is the set of all h ∈ H such that there exists g ∈ G where φ(g) = h,

imφ = {h ∈ H | ∃g ∈ G such that φ(g) = h}}.

It is really quite amazing how much can follow from this definition. Let me state a handful of propositions
and prove them for you to give you a handle on how to work with these objects.

Proposition 1. Let φ : G → H be a homomorphism. Then all of the following are true.

i. Let e ∈ G be the identity, then φ(e) = e is the identity in H.

ii. Let g−1 ∈ G then φ(g−1) = φ(g)−1. That is, φ maps inverses to inverses.

iii. Let P ⊂ G be a subgroup, then φ(P ) ⊂ H is a subgroup.

Proof.

i. Let e, g ∈ G, then

φ(g) = φ(eg) by definition of the identity

= φ(e)φ(g) since φ is a homomorphism.

But this implies φ(g) = φ(e)φ(g) and a similar argument shows φ(g) = φ(g)φ(e) which means that
φ(e) = e must be the identity of H.

ii. Take g, g−1 ∈ G then

φ(e) = φ(gg−1)

= φ(g)φ(g−1),

and since φ(e) = e it must be that φ(g−1) = φ(g)−1.

iii. Let P ⊂ G be a subgroup then we know that e ∈ P and φ(e) ∈ φ(P ). Similarly, since φ maps inverses
to inverses we know for p ∈ P that p−1 ∈ P satisfies φ(p)φ(p−1) = e therefore φ(P ) is a group.
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Problem 5: Image and Kernel

Prove image and kernel are subgroups.

Using maps between groups allows us to do more, such as detect whether two groups G and H should
be considered the same. For example, we think of sets the same if they have the same number of elements.
However, sets have less structure than groups, so we need this and more. Two groups are to be considered
the same if they are of the same size and have the same binary operation. When might this happen? Well,
perhaps when you are given G and H, you’re just seeing two different representations of the same group and
you are thrown off only by the way they look. Can you actually call them equal?

Definition 6. Given two groups G and H, we say that they are equivalent or isomorphic if there
exists a bijective homomorphism or isomorphism between G and H.

Example 6. I want to explain the use of the brackets [−] a bit further and show you the equivalence
it describes. Let J : R2 → R2 as before with J(ê1) = ê2 and J(ê2) = −ê1 and note that J acts
on the set R2 by rotational symmetries. As a symmetry action, we can compose J with itself and
note that J ◦ J = −I, J ◦ J ◦ J = −J , and J ◦ J ◦ J ◦ J = I where I : R2 → R2 is the identity
transformation. For convenience, we just write J2 = J ◦ J . You can see that ◦ acts as a symbol
for the binary operation that the group of transformations of R2 has. Let us refer to the group of
transformations by G = {I, J, J2, J3} with the binary operation of composition.

Consider the matrix

[J ] =

(
0 −1
1 0

)
.

It can be shown that
[J ]2 = −[I], [J ]3 = −[J ], [J ]4 = [I],

where

[I] =

(
1 0
0 1

)
.

We will write the group of matrices H = {[I], [J ], [J ]2, [J ]3}. Then the brackets [−] : G → H produces
an isomorphism of groups by just letting J 7→ [J ].

The truth of the matter is that given any vector space, the space of invertible operators T : V → V
which we write as Aut(V ) is isomorphic to the group of matrices [A] with nonzero determinant det[A] ̸= 0
which we write as GL(V ) and call the general linear group on V . Recall that nonzero determinant just
implies that the matrix is invertible. This leads us to one of the most important theorems in mathematics.

Theorem 3.1. Let G be a group. Then there exists a vector space V for which the group can be represented
by a subgroup of GL(V ).

In short, this theorem lets us use linear algebra to study groups. It opens up a whole new range of tools
to be used and it has led to a large wealth of new information. Likewise, it also has some kind of physical
meaning to it. In essence, if we can fix some kind of object M that we wish to study symmetries of, it suffices
to fix an associated V (for which we tend to have reasonable guesses for) and look at GL(V ) for symmetric
structures.

Problem 6: Rotational Symmetries in the Plane

et V = R2 then consider the set of 2× 2-invertible matrices GL(R2). That is, the set of matrices

[A] =

(
a b
c d

)
such that ad− bc ̸= 0.

(a) Show that GL(R2) is a group with matrix multiplication as a product.
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(b) Let

[Rθ] =

(
cos θ − sin θ
sin θ cos θ

)
.

Show that for any θ ∈ R, det[Rθ] = 1.

(c) The map θ 7→ [Rθ] generates matrices in the group called the special orthogonal group SO(2)
which is the group of matrices of determinant 1 and is a subgroup of GL(R2). Show that for each
θ ∈ R, [Rθ] rotates a vector counterclockwise by θ.

(d) Instead of letting θ ∈ R, let take nπ
2 . Show that taking n ∈ Z and mapping nπ

2 → [Rnπ
2
] yields a

group. Specifically, show this group is isomorphic to G = {[I], [J ], [J ]2, [J ]2}. Hint: you saw this
representation earlier!

(e) Using this idea and by changing π/2, find the rotational symmetries of cyclohexane

inside of the group SO(2).

(f) If we add the matrix

[S] =

(
1 0
0 −1

)
,

then the group of matrices generated by [Rθ] and [S] is the orthogonal group O(n). Argue that
the dihedral group Dn is a subgroup of O(n).

(g) What other symmetries of cyclohexane can you find that aren’t inside of SO(2)? Are all of them in
O(n)?

Problem 7: U(1) and SO(2)

The unitary group U(1) is the set of all eiθ ∈ C for θ ∈ [0, 2π]. In previous homework, we defined a
map

z = x+ iy 7→ [z] = x[I] + y[J ].

Show that this map applied to U(1) yields an isomorphism to SO(2), hence showing that there are
equivalent representations of rotations in C and in R2.

3.2 Products of groups

If groups are to represent symmetries, then we should be able to build new groups from old ones. Why is
that? Well, take for example our square. From 6 squares glued along their edges, you can create a cube. This
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cube now has many more symmetry actions associated to it. For example, each face has the symmetries of a
square, so there should be at least 6 copies of C4 hiding within the symmetries of the cube. More formally:

Definition 7. Let G and H be groups, then we can form a new group G × H called the direct
product . Given g1, g2 ∈ G and h1, h2 ∈ H, we have elements (g1, h1) ∈ G×H and (g2, h2) ∈ G×H
and the product is

(g1, h1)(g2, h2) = (g1g2, h1h2).

Example 7. Let us consider two groups G = C2 and H = C4. That is,

G = ⟨g | g2 = e⟩, H = ⟨h | h4 = e⟩.

You can think of G as the symmetries of a line segment and H as the rotational symmetries of a
square. Now, their direct product is the group G×H. All of the elements in G×H are

(e, e), (e, h) (e, h2) (e, h3)

(g, e), (g, h) (g, h2) (g, h3).

If you’d like, you can picture this as the group of symmetries of a square that is attached to the end
of a line segment, i.e., a square shaped lollipop.

Example 8. If we took instead G = C2 and H = C2 then we have a different group. This is the
symmetries of two different line segments attached together. We have

G = ⟨g | g2 = e⟩, H = ⟨h | h2 = e⟩,

so the list of elements is

(e, e), (e, h)

(g, e), (g, h).

The group C2 × C2 are the symmetries of the rectangle! Often this is written as V4 := C2 × C2 and
is called the Klein 4-group.

Problem 8: Multiplication Table

Write out the multiplication table for C2 × C2.

Problem 9: R2 = R× R

Show that the group (vector space) R2 is equivalent to the group R × R. Then argue that Rn =
R× R× · · ·R︸ ︷︷ ︸

n times

.

3.3 Formal Statement about Symmetries

Just to cap this section off, I’d like to show you the theorem that states that all groups really are symmetries
of some set. In fact, they’re symmetries of themselves. The other fact that the symmetries of an object
form a group (which we briefly argued) shows that groups and symmetries are interchangeable. Here’s the
theorem:

Theorem 3.2 (Cayley’s Theorem). Let G be a group. Then G is a subset of the of the symmetric group on
the elements of G which we write as Sym(G).

The meaning of this is as follows. We built up the idea of symmetry actions, and if we create some group
G, it must be that it is built out of symmetry actions on itself. Just for grins, let’s see another application
of group theory.
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Problem 10: Rubik’s Cube

Read some of this Wikipedia page: https://en.wikipedia.org/wiki/Rubik%27s_Cube_group. Write
down something interesting that you learn from it.

4 Differential Equations

Not all symmetries come about as symmetries of physical objects. For example, certain physical systems
have some type of symmetry to them as well. For example, when we studied ODEs we discussed the idea
that x(t) can be thought of as modeling the state of the system over time t. At another time x(τ), this
should also represent a valid state of the system. Thinking of this more abstractly now, x : R → M where
M is some set. For example, take M = (0,∞) as well and make the assertion that x satisfies some type of
natural law such as d

dtx = x under a further constraint that x(0) = 1. Then x is a group homomorphism.
How so? First, note that (0,∞) is a group under multiplication (since we are not including 0).

Problem 11

Quickly explain how (0,∞) is a group under multiplication. What are the inverses?

Then note that the solution to this IVP is x(t) = et and so to be a homomorphism we must have

x(t+ τ) = et+τ = eteτ = x(t)x(τ).

Since we wrote the product as +, we must realize that the product in the image is now multiplication. But
this is almost tautological. The exponential function is exactly the function for which associates a product
with addition, e.g., bxby = bx+y. Our physical system which we built is equivalent to a requirement that we
just want a homomorphism out of the abelian group R into some new set. In this case, it just so happens the
new set is a group equal to the image x(R), but the new set could be something just containing this image.
Finally, we can realize we asserted some of this here – we took x(0) = 1 and forced x to take the identity 0
of R to the identity 1 of (0,∞). If this was not the case, the group structure becomes less obvious, but it is
still there./

This is rather miraculous, isn’t it? Somehow, all along, this highly symmetric physical system whose
derivative was itself corresponds to a group structure. This is, in some sense, true for all dynamical systems.
They are seen as homomorphisms from Z if they are discrete time systems, R if they are causal ODEs. If
they are periodic, then they are maps from the circle group S1, but we will save this idea for another day.

In fact, a much bigger result is the following. Note that I have adjusted the statement to be more suitable
for all of us.

Theorem 4.1 (Emmy Noether’s Theorem). Every symmetry of a system corresponds to a conserved quantity
of the system.

Problem 12: Emmy Noether

Read some of the Wikipedia page about Emmy Noether: https://en.wikipedia.org/wiki/Emmy_

Noether. Write down something interesting other than the fact that many other mathematicians and
scientists including Einstein thought she was the most important woman in the history of mathematics.
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Problem 13: Energetics

Consider the harmonic oscillator equation

mx′′ + kx = 0.

We note that this equation is a second order, linear, homogeneous, and, most importantly, autonomous
equation.

(a) Noting that the force F = ma = mx′′, argue that the force itself is independent of time t. This is a
symmetry in time.

(b) Write down the general solution to this equation.

(c) Corresponding to the time symmetry, energy must be conserved. This is because t and E are
conjugate variables as position x and momentum p are as well. To this end, show

E =
1

2
mx′2 +

1

2
kx2,

is constant in time.

(d) You have shown that if x is a solution to the Hamilton equation

x′ = ix,

then x is a solution to the harmonic oscillator equation (for the correct choices of m and k). If we
require as well x(0) = 1, then show that x is a homomorphism from R to the unitary group U(1).

(e) Can you argue that the groups (0,∞) and U(1) are not isomorphic? Can you see how the additional
i added to the equation changes the symmetries of the problem?

5 Conclusions

Group theory is a massive subject. Massive, yet it talks about something so simple: a set with an invertible
binary operation. I hope that this project was challenging, but rewarding. I hope that you have found at
least something in working through this interesting. There’s many places this can go, and there are many
reasons to study group theory. I did my best to grab enough but not too many of the basic ideas and give
you problems that could work through and learn something from. I especially wanted you to realize that
the concepts are useful in the real world as well. Just two more questions to go.

Problem 14

What else would you have liked to learn about group theory? What parts of this project worked well,
and what parts didn’t?

One thing I would have liked to include is the idea of quotienting groups. This would have given us the
understanding of how adding geometric restrictions gives you a quotient group.

Colin Roberts 12 Colorado State University
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Problem 15

Do you have any suggestions for Math 272? What can be done to make the class better for you? If you
are not taking 272, then please still give me suggestions!

Colin Roberts 13 Colorado State University
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