
MATH 271, Homework 9, Solutions
Due November 15th

Problem 1. Compute the following:

(a)

[A] =
(
1 1 1

)2
1
3

 .

(b)

[B] =

1 2 3 4
5 6 7 8
9 10 11 12



3 2
2 3
3 2
2 3


(c) Take

[M ] =

(
10 15
20 10

)
and

[N ] =

(
1 2
2 1

)
.

Compute [M ][N ] and [N ][M ] to see that matrices do not commute in general.

Solution 1.

(a) Since we have a 1 × 3-matrix multiplied with a 3 × 1-matrix, we know that [A] should
be a 1× 1-matrix.

[A] =
(
1 1 1

)2
1
3


= (1 · 2 + 1 · 1 + 1 · 3)
= (6).

(b) Here, we should expect that [B] is a 3× 2-matrix.

[B] =

 24 26
64 66
104 106

 .

(c) Here [M ] and [N ] are square, so multiplying will give us the same shape matrix. We
have

[M ][N ] =

(
40 35
40 50

)
,

as well as

[N ][M ] =

(
50 35
40 40

)
.

From this we can see that [M ][N ] ̸= [N ][M ] in general!
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Problem 2. A linear transformation T : R3 → R3 is given by the matrix

[T ] =

1 2 0
2 1 2
0 2 1

 .

(a) Compute how T transforms the standard basis elements for R3. That is, find

T (ê1), T (ê2), T (ê3)

and relate these values to the columns of [T ].

(b) Is the transformed basis T (ê1), T (ê2), and T (ê3) linearly independent? Do these vectors
form a basis for R3?

(c) If we apply this linear transformation to the unit cube (that is, all points who have
(x, y, z) coordinates with 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, and 0 ≤ z ≤ 1), what will the volume
of the transformed cube be? (Hint: use the determinant.)

Solution 2.

(a) The point here is that we can understand the matrix [T ] and matrix multiplication better
by seeing how the basis vectors are transformed. So we have

T (ê1) =

1 2 0
2 1 2
0 2 1

1
0
0


=

1
2
0


= ê1 + 2ê2,

which is just the first column of the matrix. Then we have

T (ê2) =

1 2 0
2 1 2
0 2 1

0
1
0


=

2
1
2


= 2ê1 + ê2 + 2ê3,

which is just the second column of the matrix. Lastly we have

T (ê3) =

1 2 0
2 1 2
0 2 1

0
0
1


=

0
2
1


= 2ê2 + ê3,
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which is the last column of the matrix.

(b) Yes. You can see this in the following ways: By row reducing to the identity matrix, by
showing that the kernel is trivial, or by computing the determinant and showing it is
nonzero. Let us use the determinant.

det[T ] = −7.

therefore the columns are linearly independent. Since the columns are exactly T (êj) by
definition, those vectors are independent. Since it is a set of 3 independent vectors in
R3, it is a basis and all of R3 is in the span of those transformed vectors.

(c) The three basis vectors

ê1 =

1
0
0

 , ê2 =

0
1
0

 , ê3 =

0
0
1


define the volume of the unit cube. That is, the parallelepiped generated by ê1, ê2, and
ê3 is the unit cube. Hence, if we know how these vectors are transformed, we just need
to find the volume of the paralellepiped given by the transformed vectors T (ê1), T (ê2),
and T (ê3). Now, we can collect these vectors into a matrix, | | |

T (ê1) T (ê2) T (ê3)
| | |

 =

1 2 0
2 1 2
0 2 1

 ,

which is exactly [T ] and this should not be shocking since this is how we defined a matrix
representation in the first place. Now, the determinant of the matrix gives us the signed
volume of the parallelepiped generated by the three column vectors, and hence

Area = | det[T ]| = | − 7| = 7.
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Problem 3.

(a) Show that for any 2× 2-matrix that the sign of the determinant changes if either a row
or column is swapped. Note: this is true for square matrices of any size.

(b) Show that for any 2 × 2-matrix that multiplying a column by a constant scales the
determinant by that constant as well. Note: this is true for square matrices of any size.

(c) Show that for any 2 × 2-matrix that adding a scalar multiple one column to the other
will not change the determinant. Note: this is true in broader generality. In fact, adding
linear combinations of columns to another column will not change the determinant.

(d) Using these facts, argue that a square matrix with columns that are linearly dependent
must have a determinant of zero.

Solution 3.

(a) Let

[A] =

(
a b
c d

)
be an arbitrary 2× 2-matrix. Then we have

det([A]) = ad− bc.

Now, if we swap rows we have∣∣∣∣c d
a b

∣∣∣∣ = bc− ad = −(ad− bc).

Now, we can do the same with columns to get∣∣∣∣b a
d c

∣∣∣∣ = bc− ad = −(ad− bc).

(b) Let us compute the determinant of∣∣∣∣αa b
αc d

∣∣∣∣ = αad− αbc = α(ad− bc).

Similarly, we will have the same if we scale the other column. In fact, this is true for
rows as well.

(c) Let us add the first column to the second. We get∣∣∣∣αa αa+ b
αc αc+ d

∣∣∣∣ = a(αc+ d)− (αa+ b)c = αac+ ad− αac− bc = ad− bc.

The same will be true if we add a scalar copy of column 2 to column 1.
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(d) Let us just show this for a 3×3-matrix as the argument is the same for the most general
case. Let

[A] =

 | | |
A⃗1 A⃗2 A⃗3

| | |

 .

Then if the columns of [A] are linearly dependent, we have that

α1A⃗1 + α2A⃗2 + α3A⃗3 = 0⃗

with at least one αi ̸= 0. Specifically, this means that one vector can be written as a
linear combination of the others. That is we can take

A⃗3 =
−1

α3

(α1A⃗1 + α2A⃗2),

so long as α3 ̸= 0. If α3 = 0, then choose another vector to write as a linear combination
of the others. Then, we can subtract the quantity

−1

α3

(α1A⃗1 + α2A⃗2)

from column 3 in [A] to get  | | |
A⃗1 A⃗2 0⃗
| | |

 ,

which has a determinant of zero. Since we only added a linear combination of columns to
another column, this did not change the determinant and hence we must have det([A]) =
0. I will leave it open for you to do this for an n× n-matrix.
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Problem 4. Consider the equation
[A]v⃗ = 0⃗,

where

[A] =

0 1 0
1 0 1
0 1 0

 .

(a) Are the columns of [A] linearly independent or dependent? Explain.

(b) What vector(s) v⃗ satisfy this equation? In other words, what is Null([A])?

(c) Using what you found above, what must det([A]) be equal to? Hint: you do not need to
compute the determinant!

Solution 4.

(a) The columns are dependent as the leftmost column is equal to the rightmost column.

(b) To solve the homogeneous equation we take

[M ] =

 0 1 0 0
1 0 1 0
0 1 0 0

 .

Then we can subtract row one from row three to get 0 1 0 0
1 0 1 0
0 0 0 0


which corresponds to the equations

0x+ y + 0z = 0

x+ 0y + z = 0

0x+ 0y + 0z = 0.

Hence we have that z = −x and y = 0. Thus any vector of the form

v⃗ =

 t
0
−t


for any t ∈ R is a solution to this equation. In other words, the set described above is
ker[A].

(c) The determinant must be equal to zero since ker[A] is nontrivial (i.e., it contains more
than just the zero vector). One can also note the columns are dependent which implies
this as well. This goes to show a bit on how these ideas are all connected.
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Problem 5. Compute the following.

(a)

det[A] =

∣∣∣∣∣∣
−3 1 5
−3 4 2
−3 2 1

∣∣∣∣∣∣
(b)

det[B] =

∣∣∣∣∣∣
1 2 3
4 5 6
7 8 9

∣∣∣∣∣∣
(c) Compute det([A][B]) using properties of the determinant. Hint: this should be very quick

to do. Do not compute the product of the matrices [A] and [B]!

(d) Compute tr([C]) and tr([D]) where

[C] =

 1 0 2
2 1 3
−2 −2 0

 and [D] =

−3 1 1
2 −2 4
−1 −1 −1

 .

(e) Compute tr([C][D]) and compare it to tr([D][C]).

Solution 5.

(a) We can expand along any row or column and in this case, there are no zeros to make
the computation quicker. So we have∣∣∣∣∣∣

−3 1 5
−3 4 2
−3 2 1

∣∣∣∣∣∣ = −3

∣∣∣∣4 2
2 1

∣∣∣∣− 1

∣∣∣∣−3 2
−3 1

∣∣∣∣+ 5

∣∣∣∣−3 4
−3 2

∣∣∣∣
= −3(4− 4)− 1(−3 + 6) + 5(−6 + 12)

= 27.

(b) Similarly, we get
det([B]) = 0.

(c) We know that det([A][B]) = det([A]) det([B]) and thus we have that det([A][B]) = 0.

(d) The trace is the sum of the diagonal entries. Thus we have

tr[C] = 1 + 1 + 0 = 2,

tr[D] = −3− 2− 1 = −6.
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(e) Then we can compute [C][D],

[C][D] =

−5 −1 −1
−7 −3 3
2 2 −10

 .

Hence we have
tr([C][D]) = −18.

Note that under cyclic permutations, the trace is invariant, hence

tr([C][D]) = tr([D][C])

even though [C][D] ̸= [D][C]
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Problem 6. Consider some linear transformation T : Rn → Rm. Let v⃗1, . . . , v⃗k be vectors
in Null(T ).

(a) Show that the span of these vectors is also in the kernel of T .

(b) How many linearly independent vectors can be in the kernel? Give bounds using n and
m.

Solution 6.

(a) An arbitrary vector v⃗ in the span of v⃗1, . . . , v⃗k is given by

v⃗ = α1v⃗1 + α2v⃗2 + · · ·+ αkv⃗k.

Since v⃗ is arbitrary, if we show v⃗ ∈ kerT , then we are done. So we take

T (v⃗) = T (α1v⃗1 + α2v⃗2 + · · ·+ αkv⃗k)

= α1T (v⃗1) + α2T (v⃗2) + · · ·+ αkT (v⃗k) by linearity of T

= 0 since T (v⃗i) = 0 for all i = 1, . . . , k.

Thus the span of v⃗1, . . . , v⃗k is also in the nullspace of T .

(b) With T : Rn → Rm we can take the transformation T (v⃗) = 0⃗ for every vector v⃗ ∈ Rn.
Note that this transformation always exists and will always have the largest kernel.
Thus, the kernel of T would have as many as n-linearly independent vectors since there
can be at most n-linearly independent vectors in Rn. This fact is independent of the
value for m.

Taking m into account now, if m < n, then we must have n −m vectors in the kernel
of T at the very least. The argument is somewhat geometrical as T removes n − m
dimensions in the process and as such, we remove n − m linearly independent vectors
(as those vectors span those removed dimensions). Thus, if m < n we have that

n−m ≤ number of L.I. vectors in kernel of T ≤ n.

In the case m ≥ n we have

0 ≤ number of L.I. vectors in kernel of T ≤ n.

To see why this is true, we let v⃗ = v1ê1 + v2ê2 + · · · + vnên and note that if m ≥ n we
can take

T (v⃗) = v1ê1 + v2ê2 + · · ·+ vnên + 0ên+1 + · · ·+ 0êm,

which shows that there are no nontrivial vectors in the kernel of this T .
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Problem 7. Suppose that the operator T : V → V has a nonzero kernel (e.g., some vector
v⃗ other than 0⃗ is in the kernel). Prove that T has no inverse. Hint: this means you can
construct a vector that is not in the image of T !

Solution 7. I will give two proofs for this:

� It is true that
dimV = dimkerT + dim imT.

Therefore if dim kerT > 0, then dim imT < dimV . Hence, there exists at least one
nonzero vector v⃗ ∈ V that is not in the image of T . Therefore, the is no u⃗ ∈ V such
that T (u⃗) = v⃗ and so T has no inverse.

� Since T has a nonzero kernel, take v⃗ ̸= 0⃗ ∈ kerT . Then T (v⃗) = 0⃗ = T (⃗0) Therefore if
T−1 did exist, it must be that T−1(⃗0) = v⃗ and T−1(⃗0) = 0⃗. This is a contradiction so
the supposition must be false.
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Problem 8. The previous problem will be very helpful for these two parts.

(a) Let T : V → V be an operator such that det[T ] = 0. Explain why there exists a solution
to the homogeneous equation T u⃗ = 0⃗.

(b) Suppose S : V → V is another operator such that det[S] ̸= 0. Explain why there exists
a solution to the inhomogeneous equation Sv⃗ = w⃗ for any w⃗ ∈ V .

Solution 8.

(a) Since det[T ] = 0 it must be that the kernel of T is nonzero. You can see this fact in
many ways. For instance, the columns of [T ] are linearly dependent and hence you can
take a linear combination of T (e⃗j) and get the zero vector, for instance

u1T (e⃗1) + · · ·+ unT (e⃗n) = 0⃗

where not all uj are zero. Hence, there exists a vector u⃗ =
∑n

j=1 uje⃗j ∈ kerT and by

definition/construction T u⃗ = 0⃗.

(b) Since det[S] ̸= 0 then the columns of S are linearly independent. Since there are n-
linearly independent vectors in an n-dimensional space (assuming V is dimension n),
they form a basis and span V . Note that for v⃗ =

∑n
j=1 vjêj and

Sv⃗ =
n∑

j=1

vjS(êj)

which is just a linear combination of the columns of [S]. Since the columns of [S] are
a basis, for any vector w⃗ ∈ V , we have w⃗ ∈ Span{S(ê1), . . . , S(ên)} which is exactly
what Sv⃗ dictates.
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Problem 9. Prove that the eigenvectors with eigenvalue 0 of an operator T : V → V corre-
spond to vectors in the kernel of T .

Solution 9. Let v⃗ ∈ V be an eigenvector with eigenvalue λ = 0. Then

T v⃗ = λv⃗ = 0v⃗ = 0.

Thus v⃗ ∈ kerT .
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Problem 10. Consider the linear operator J : R2 → R2 defined by

J(ê1) = ê2 and J(ê2) = −ê1.

(a) Show that operator polynomial

P (J) := J2 + I : R2 → R2

annihilates R2. Or, said another way, show that every v⃗ ∈ R2 is in the kernel of P (J).

(b) Show that the characteristic polynomial of J is

p(λ) = λ2 + 1.

Does this coincide with P (J)? If need be, use your matrix representation [J ] from the
previous homework.

(c) Compute the eigenvalues λ1 and λ2 of J .

(d) Compute the corresponding eigenvectors of J .

(e) If we don’t allow for complex scalars, J has no eigenvalues. However, J2 does have only
real eigenvalues. Using (a), show that J has eigenvalue λ = −1 with eigenvectors ê1 and
ê2.

(f) (Bonus) Can you argue that any nonzero rotation of R2 must have imaginary eigenvalues?

Solution 10. (a) Let v⃗ ∈ R2 be given by v⃗ = v1ê1 + v2ê2. Then

(J2 + I)v⃗ = J2v⃗ + Iv⃗

= J(J(v1ê1 + v2ê2))

= J(−v2ê1 + v1ê2) + v⃗

= −v1ê1 − v2ê2 + v⃗

= 0⃗.

(b) We can form a matrix

[J ] =

(
0 −1
1 0

)
.

Then

det([J ]− λ[I]) = det

(
−λ −1
1 −λ

)
= λ2 + 1.

(c) The eigenvalues are the roots to the characteristic polynomial so

λ2 + 1 = 0.

The roots are λ1 = i and λ2 = −i.
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(d) For λ1 = i, we take ([J ]− i[I])p⃗1 = 0⃗ where p⃗1 is the first eigenvector

([J ]− i[I])p⃗1 =

(
−i −1
1 −i

)(
p11
p21

)
=

(
0
0

)
.

Thus

−ip11 − p21 = 0

p11 − ip21 = 0.

Multiplying the bottom equation by i yields

ip11 + p21 = 0

which can be added to the first equation to cancel it off. Hence

p11 = ip21.

So just choose p21 = 1 and

p⃗1 =

(
i
1

)

Similar work for λ2 shows that a corresponding eigenvector is p⃗2 =

(
−i
1

)
.

Remark 1. The matrix [P ] = [p⃗1 p⃗2] diagonalizes [J ].

(e) Just take
J2(ê1) = J(J(ê1)) = J(ê2) = −ê1

and
J2(ê2) = J(J(ê2)) = J(−ê1) = −J(ê1) = −ê2

which shows both are eigenvectors with eigenvalue 1.

(f) An arbitrary rotation of some plane is given by the matrix(
cos θ − sin θ
sin θ cos θ

)
for some choice of θ then the characteristic polynomial is

λ2 − 2λ cos θ + 1

which has roots

λ1 = cos θ − i sin θ

λ2 = cos θ + i sin θ.

and the same eigenvectors as [J ].
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Problem 11. For this problem, we will consider eigenvectors of three operators that act on
the space of analytic functions Cω(C). Your goal should be to realize that these correspond
to differential equations you have seen before.

(a) Take the operator d
dx
: Cω(C) → Cω(C). Show that the exponential ekx ∈ Cω(C) is an

eigenvector (or eigenfunction) with eigenvalue k. Write down the corresponding ODE.
Hint: just by doing the problem properly, you will probably write down the ODE.

(b) Take the operator d2

dx2 : C
ω(C) → Cω(C). Show that there are two eigenfunctions eiωx

and e−iωx with eigenvalue −ω2. Write down the corresponding ODE. Hint: just by doing
the problem properly, you will probably write down the ODE.

(c) Take the operator x d
dx
: Cω(C) → Cω(C). Find the eigenfunctions to this operator using

the fact that this corresponds to a separable ODE.

Solution 11.

(a) An eigenfunction of d
dx

is a function f such that

d

dx
f = kf.

So, take f = ekx then
d

dx
ekx = kekx

is an eigenfunction.

(b) An eigenfunction of d2

dx2 is a function f such that

d2

dx2
f = λf = −ω2f

where I’m taking the liberty of using −ω2 as an eigenvalue since I already know the work
here. Take f± = e±iωx then

d

dx
e±iωx = −ω2e±iωx

is an eigenfunction.

(c) An eigenfunction of d
dx

is a function f such that

x
d

dx
f = λf.
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Then

x
d

dx
f = λf

⇐⇒ 1

f

df

dx
= λ

1

x

⇐⇒
∫

1

f
df = λ

∫
1

x
dx

⇐⇒ ln f = λ lnx+ c

⇐⇒ f = cxλ.

Hence the eigenfunctions are xλ.

Remark 2. On polynomials, the basis functions xj for j = 0, . . . , n are eigenvectors
with eigenvalue j. So, in matrix notation for example take P3(C),

[
x
d

dx

]
=


1 0 0 0
0 2 0 0
0 0 3 0
0 0 0 4

 .

If you’d like, you can see that x acts on P3(C) as a right shift operator.
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Problem 12. Consider the Legendre polynomials

BL =

{
f0 =

√
1

2
, f1 =

√
3

2
x, f2 =

√
5

8
(1− 3x2), f3 =

√
63

8

(
x− 5x3

3

)}
which form a basis for P3(C).

(a) For polynomials f, g ∈ P3(C), define an inner product

⟨g, h⟩ :=
∫ 1

−1

gh∗dx.

Show (or find in the text or previous homeworks) evidence that the basis BL is orthonor-
mal with respect to this inner product.

(b) Consider the operator

L := (1− x2)
d2

dx2
− 2x

d

dx
: P3(C) → P3(C).

Show that L is linear.

(c) Show that each Legendre polynomial fi is an eigenvector (or eigenfunction) of L. What
are the corresponding eigenvalues? How do these eigenvalues correspond to the m that
appears in Legendre’s equation (see the section in our text).

Solution 12.

(a) See Homework 6 Problem 4 solution.

(b) First we know that d
dx

is linear by previous homework. The composition of linear trans-

formations are also linear transformations so d2

dx2 is linear. Next, taking f ∈ P3 we can
write

x
d

dx
= x(α0 + α1x+ α2x

2 + α3x
3) = α1x+ 2α2x

2 + 3α3x
3

and also

x2 d2

dx2
f = 2α2x

2 + 6α3x
3

so we see both of those operators are linear as well. Hence since linear combinations of
linear transformation are linear, L must be linear.

(c) First, since f0 is constant and L acts by differentiation at least once,

Lf0 = 0,

so f0 is an eigenfunction with eigenvalue 0. Next,

Lf1 = (1− x2)
d2

dx2

(√
3

2
x

)
− 2x

d

dx

(√
3

2
x

)

= 2

√
3

2
x
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So f1 is an eigenfunction with eigenvalue 1(1 + 1) = 2. Next,

Lf2 = (1− x2)
d2

dx2

(√
5

8
(1− 3x2)

)
− 2x

d

dx

(√
5

8
(1− 3x2)

)

= 6

(√
5

8
(1− 3x2)

)

So f2 is an eigenfunction with eigenvalue 2(2 + 1) = 6. Finally,

Lf3 = (1− x2)
d2

dx2

(√
63

8

(
x− 5x3

3

))
− 2x

d

dx

(√
63

8

(
x− 5x3

3

))

= 12

(√
63

8

(
x− 5x3

3

))

So f3 is an eigenfunction with eigenvalu 3(3 + 1) = 12. So the subscript j for fj
corresponds to the α in Homework 6 Problem 4 or the m in the text.
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