
MATH 271, Homework 9
Due December 3rd

Problem 1. Compute the following:

(a)

[A] =
(
1 1 1

)2
1
3

 .

(b)

[B] =

1 2 3 4
5 6 7 8
9 10 11 12



3 2
2 3
3 2
2 3


(c) Take

[M ] =

(
10 15
20 10

)
and

[N ] =

(
1 2
2 1

)
.

Compute [M ][N ] and [N ][M ] to see that matrices do not commute in general.

Problem 2. A linear transformation T : R3 → R3 is given by the matrix

[T ] =

1 2 0
2 1 2
0 2 1

 .

(a) Compute how T transforms the standard basis elements for R3. That is, find

T (ê1), T (ê2), T (ê3)

and relate these values to the columns of [T ].

(b) Is the transformed basis T (ê1), T (ê2), and T (ê3) linearly independent? Do these vectors
form a basis for R3?

(c) If we apply this linear transformation to the unit cube (that is, all points who have
(x, y, z) coordinates with 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, and 0 ≤ z ≤ 1), what will the volume
of the transformed cube be? (Hint: use the determinant.)

Problem 3.

(a) Show that for any 2× 2-matrix that the sign of the determinant changes if either a row
or column is swapped. Note: this is true for square matrices of any size.
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(b) Show that for any 2 × 2-matrix that multiplying a column by a constant scales the
determinant by that constant as well. Note: this is true for square matrices of any size.

(c) Show that for any 2 × 2-matrix that adding a scalar multiple one column to the other
will not change the determinant. Note: this is true in broader generality. In fact, adding
linear combinations of columns to another column will not change the determinant.

(d) Using these facts, argue why a square matrix with columns that are linearly dependent
must have a determinant of zero.

Problem 4. Consider the equation
[A]v⃗ = 0⃗,

where

[A] =

0 1 0
1 0 1
0 1 0

 .

(a) Are the columns of [A] linearly independent or dependent? Explain.

(b) What vector(s) v⃗ satisfy this equation? In other words, what is ker[A]?

(c) Using what you found above, what must det[A] be equal to? Hint: you do not need to
compute the determinant!

Problem 5. Compute the following.

(a)

det[A] =

∣∣∣∣∣∣
−3 1 5
−3 4 2
−3 2 1

∣∣∣∣∣∣
(b)

det[B] =

∣∣∣∣∣∣
1 2 3
4 5 6
7 8 9

∣∣∣∣∣∣
(c) Compute det([A][B]) using properties of the determinant. Hint: this should be very quick

to do. Do not compute the product of the matrices [A] and [B]!

(d) Compute tr([C]) and tr([D]) where

[C] =

 1 0 2
2 1 3
−2 −2 0

 and [D] =

−3 1 1
2 −2 4
−1 −1 −1

 .

(e) Compute tr([C][D]) and compare it to tr([C][D]).

Problem 6. Consider some linear transformation T : Rn → Rm. Let v⃗1, . . . , v⃗k be vectors
in the kernel ker(T ).
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(a) Show that the span of these vectors is also in the kernel of T .

(b) How many linearly independent vectors can be in the kernel? Give bounds using n and
m.

Problem 7. Suppose that the operator T : V → V has a nonzero kernel (e.g., some vector
v⃗ other than 0⃗ is in the kernel). Prove that T has no inverse. Hint: this means you can
construct a vector that is not in the image of T !

Problem 8. The previous problem will be very helpful for these two parts.

(a) Let T : V → V be an operator such that det[T ] = 0. Explain why there exists a solution
to the homogeneous equation Su⃗ = 0⃗.

(b) Suppose S : V → V is another operator such that det[S] ̸= 0. Explain why there exists
a solution to the inhomogeneous equation Sv⃗ = w⃗ for any w⃗ ∈ V .

Problem 9. Prove that the eigenvectors with eigenvalue 0 of an operator T : V → V corre-
spond to vectors in the kernel of T .

Problem 10. Consider the linear operator J : R2 → R2 defined by

J(ê1) = ê2 and J(ê2) = −ê1.

(a) Show that operator polynomial

P (J) := J2 + I : R2 → R2

annihilates R2. Or, said another way, show that every v⃗ ∈ R2 is in the kernel of P (J).

(b) Show that the characteristic polynomial of J is

p(λ) = λ2 + 1.

Does this coincide with P (J)? If need be, use your matrix representation [J ] from the
previous homework.

(c) Compute the eigenvalues λ1 and λ2 of J .

(d) Compute the corresponding eigenvectors of J .

(e) If we don’t allow for complex scalars, J has no eigenvalues. However, J2 does have only
real eigenvalues. Using (a), show that J has eigenvalue λ = −1 with eigenvectors ê1 and
ê2.

(f) (Bonus) Can you argue that any nonzero rotation of R2 must have imaginary eigenvalues?

Problem 11. For this problem, we will consider eigenvectors of three operators that act on
the space of analytic functions Cω(C). Your goal should be to realize that these correspond
to differential equations you have seen before.
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(a) Take the operator d
dx
: Cω(C) → Cω(C). Show that the exponential ekx ∈ Cω(C) is an

eigenvector (or eigenfunction) with eigenvalue k. Write down the corresponding ODE.
Hint: just by doing the problem properly, you will probably write down the ODE.

(b) Take the operator d2

dx2 : C
ω(C) → Cω(C). Show that there are two eigenfunctions eiωx

and e−iωx with eigenvalue −ω2. Write down the corresponding ODE. Hint: just by doing
the problem properly, you will probably write down the ODE.

(c) Take the operator x d
dx
: Cω(C) → Cω(C). Find the eigenfunctions to this operator using

the fact that this corresponds to a separable ODE.

Problem 12. Consider the Legendre polynomials

BL =

{
f0 =

√
1

2
, f1 =

√
3

2
x, f2 =

√
5

8
(1− 3x2), f3 =

√
63

8

(
x− 5x3

3

)}

which form a basis for P3(C).

(a) For polynomials f, g ∈ P3(C), define an inner product

⟨g, h⟩ :=
∫ 1

−1

gh∗dx.

Show (or find in the text or previous homeworks) evidence that the basis BL is orthonor-
mal with respect to this inner product.

(b) Consider the operator

L := (1− x2)
d2

dx2
− 2x

d

dx
: P3(C) → P3(C).

Show that L is linear.

(c) Show that each Legendre polynomial fi is an eigenvector (or eigenfunction) of L. What
are the corresponding eigenvalues? How do these eigenvalues correspond to the m that
appears in Legendre’s equation (see the section in our text).
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