
MATH 271, Homework 8, Solutions

Problem 1. Consider the following vectors in space R3

u⃗ = ê1 + 2ê2 + 3ê3 and v⃗ = −2ê1 + ê2 − 2ê3.

(a) Compute the dot product u⃗ · v⃗.

(b) Compute the lengths |u⃗| and |v⃗| using the dot product.

(c) Compute the projection of u⃗ in the direction of v⃗. Hint: don’t forget to normalize the
vectors before you build your projection.

(d) Compute the cross product u⃗× v⃗.

(e) Find the area of the parallelogram generated by u⃗ and v⃗.

Solution 1.

(a) We have that

u⃗ · v⃗ = 1 · (−2) + 2 · 1 + 3 · (−3)

= −6.

(b) We compute the lengths using the dot product by

∥u⃗∥ =
√
u⃗ · u⃗ =

√
12 + 22 + 32 =

√
14.

Likewise
∥v⃗∥ =

√
v⃗ · v⃗ =

√
(−2)2 + 12(−2)2 =

√
9 = 3.

(c) The projection of u⃗ in the direction of v⃗ is simply asking for how much of the vector
u⃗ is in the direction of v⃗. One can arrive at this purely through trigonometry, but we
have the dot product at our disposal. The normalized vector v̂ points in the direction
of v⃗ with length 1 and

v̂ =
1

∥v⃗∥
v⃗ =

1

3
v⃗.

Then, the projection can be computed by

u⃗ · v̂ =
1

3
u⃗ · v⃗ = −2.

One should attempt to recover this notion by doing some trigonometry.

(d) Here, feel free to use a formula for a cross product instead of writing it all out. We will
find that

u⃗× v⃗ = −7x̂− 4ŷ + 5ẑ.

(e) The area of the parallelogram is given by the magnitude of the cross product so

A = |u⃗× v⃗| = 3
√
10.
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Problem 2. Write down the matrix for the following linear transformation T : R3 → R3:

T

x
y
z

 =

x+ y + z
2x

3y + z

 .

Solution 2. We need that

[T ]

x
y
z

 =

x+ y + z
2x

3y + z


via matrix multiplication. Since the input vector is a 3-dimensional vector, and the output
vector is 3-dimensional, we must have that [T ] is a 3× 3-matrix. Hence,

[T ] =

t11 t12 t13
t21 t22 t23
t31 t32 t33

 .

Then we havet11 t12 t13
t21 t22 t23
t31 t32 t33

x
y
z

 =

t11x+ t12y + t13z
t21x+ t22y + t23z
t31x+ t32y + t33z

 =

x+ y + z
2x

3y + z

 .

If we match the coefficients on the x, y, and z, we find that

[T ] =

1 1 1
2 0 0
0 3 1

 .
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Problem 3. Consider the linear transformation J : R2 → R2 defined by

J(ê1) = ê2 and J(ê2) = −ê1.

This linear transformation is fundamental in understanding how we can reconstruct complex
numbers using matrices.

(a) Show that J2 = J ◦ J = −1.

(b) Determine a matrix representation for J and denote it by [J ].

(c) Recall that we can represent a complex number as z = x+ iy and that we can represent

z as a vector in R2 as ζ⃗ = xê1 + yê2. Show that J ζ⃗ corresponds to iz. Hint: just show
the multiplcations are analogous.

(d) We can completely reconstruct a representation of C by using a matrix representation.
In particular, we can take

[z] = x[I] + y[J ].

Show that we recover the complex addition and multiplication using this representation.

(e) We can represent a unit complex number as z = eiθ. Show that the representation
described before leads to

[z] =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
.

Solution 3. (a) Let v⃗ = v1x̂+ v2ŷ be some arbitrary vector in R2. Then,

J2(v⃗) = J(J(v⃗)) = J(J(v1x̂+ v2ŷ))

= J(v1J(x̂) + v2J(ŷ))

= J(v1ŷ − v2x̂)

= v1J(ŷ)− v2J(x̂)

= −v1x̂− v2ŷ

= −v⃗.

So, yes, J2 acts like scaling by -1.

(b) We determine a matrix for J by using the definition of J on x̂ and ŷ. In particular,

[J ] =

 | |
J(x̂) J(ŷ)
| |

 =

(
0 −1
1 0

)
.

One can check here that [J ]2 = −[I], where [I] is the identity matrix. This confirms that
[J ] satisfies the relationship we saw in (a).
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(c) In the complex plane, we let z = x+ iy and we can note that

iz = −y + ix.

Now, we can think of z as a vector in R2 by noticing that the vector ζ⃗ = xx̂ + yŷ
corresponds to the same exact point geometrically. Then, if we apply J we have

J ζ⃗ = −yx̂+ xŷ,

which is exactly how z was transformed when we multiplied by i. Keep in mind that i
rotates a complex number z by π/2 in the counterclockwise direction and J does the same

to vectors ζ⃗. To see this most fully, consider drawing a picture of both transformations.

(d) In the complex plane, we can take two complex numbers z1 = x1+ iy1 and z2 = x2+ iy2.
Then we have

z1 + z2 = (x1 + x2) + i(y1 + y2) and z1z2 = (x1x2 − y1y2) + i(x1y2 + x2y1).

Notice that addition is componentwise and keep track of this result from the multiplica-
tion.

Now, we can consider two matrices [z1] = x1[I] + y1[J ] and [z2] = x2[I] + y2[J ] and see
what we get through addition and multiplication. We have

[z1] + [z2] = (x1 + x2)[I] + (y1 + y2)[J ].

This is due to how matrices add componentwise and we can see that this corresponds to
the addition in C. Next, we have

[z1][z2] = (x1[I] + y1[J ])(x2[I] + y2[J ])

= x1x2[I]
2 + y1x2[J ][I] + x1y2[I][J ] + y1y2[J ]

2

= x1x2[I] + y1x2[J ] + x1y2[J ]− y1y2[I]

= (x1x2 − y1y2)[I] + (x1y2 + x2y1)[J ].

Note that I use the facts [J ][I] = [I][J ] = [J ], [I]2 = [I], and from (a) we know [J ]2 =
−[I]. If we take a look at the end result, we can see that this is the same multiplication
result as z1z2 in C.

(e) Using our knowledge from the previous problem, and Euler’s formula, we know that we
can take

[eiθ] = cos(θ)[I] + sin(θ)[J ].

Writing out the matrices explicitly yields

[eiθ] =

(
cos(θ) 0

0 cos(θ)

)
+

(
0 − sin(θ)

sin(θ) 0

)
=

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
,

as intended.

Remark 1. If one goes to look up a rotation matrix for R2, you will find the matrix you
found in (e). So, this goes to show that complex arithmetic captures rotations nicely through
Euler’s formula. Moreover, the matrix representation for a complex number is faithful in
describing all that we need.
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Problem 4. Take the following matrices:

[A] =

(
4 3 10 2
1 1 0 9

)
, [B] =

 8 5 8
10 9 2
4 6 3

 , [C] =


0 0 9
7 9 9
1 9 9
3 3 1


(a) Compute either [A][C] or [C][A] and state which multiplication is not possible.

(b) Compute either [B][C] or [C][B] and state which multiplication is not possible.

(c) Can you add any of these matrices?

(d) Describe each matrix as linear transformation T : Rm → Rn. What is m and n for each?
How does this relate to the number of rows and columns?

Solution 4.

(a) The matrix [A] is a 2× 4 matrix and matrix [C] is a 4× 3 matrix. So we can compute
[A][C] but not [C][A]. Given that, we also expect the output to be a 2× 3 matrix. So,
we have

[A][C] =

(
4 3 10 2
1 1 0 9

)
0 0 9
7 9 9
1 9 9
3 3 1

 =

(
37 123 155
34 36 27

)
.

(b) [B] is a 3× 3 matrix so we can take [C][B] but not [B][C]. We get

[C][B] =


0 0 9
7 9 9
1 9 9
3 3 1


 8 5 8
10 9 2
4 6 3

 =


36 54 27
182 170 101
134 140 53
58 48 33

 .

(c) We can always add a matrix to itself, so, for example [A] + [A], [B] + [B], and [C] + [C]
make sense. However, since the dimensions of [A], [B], and [C] all differ, we cannot add
in any other way.

(d) The number of columns of a matrix denotes the input dimension m, and the number of
rows denotes the output dimension n. So

A : R4 → R2, B : R3 → R3, C : R3 → R4.
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Problem 5. Solve the following equation.1 1 1
1 2 1
1 2 2

x
y
z

 =

 6
8
11

 .

Solution 5. First, we create the augmented matrix 1 1 1 6
1 2 1 8
1 2 2 11

 .

We can subtract R1 from both R2 and R3 to get 1 1 1 6
0 1 0 2
0 1 1 5

 .

Then subtract R3 from R1 to get  1 0 0 1
0 1 0 2
0 1 1 5

 .

Finally, subtract R2 from R3 to get 1 0 0 1
0 1 0 2
0 0 1 3

 .

This yields our result in the right most column in that x = 1, y = 2, and z = 3.
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Problem 6. Consider the space of polynomials of degree at most 3, P3(C).

(a) Using the basis
B = {1, x, x2, x3},

determine a matrix representation for the linear transformation d
dx
: P3(C) → P3(C).

(b) Show that the set of Legendre polynomials

BL =

{
f0 =

√
1

2
, f1 =

√
3

2
x, f2 =

√
5

8
(1− 3x2), f3 =

√
63

8

(
x− 5x3

3

)}
is a basis for P3(C).

(c) Using the basis BL instead, compute a matrix representation for the linear transforma-
tion d

dx
.

Solution 6.

(a) Using the basis B, we can take an arbitrary degree at most 3 polynomial and write it as
a column vector by

a0 + a1x+ a2x
2 + a3x

3 =


a0
a1
a2
a3


that is, we let

1 =


1
0
0
0

 , x =


0
1
0
0

 , x2 =


0
0
1
0

 , x3 =


0
0
0
1

 .

Then we can compute

d

dx
(a0 + a1x+ a2x

2 + a3x
3) = a1 + 2a2x+ 3a3x

2 =


a1
2a2
3a3
0

 .

To get a matrix for this expression, we have

[
d

dx

]
a0
a1
a2
a3

 =


a1
2a2
3a3
0


which one can verify is [

d

dx

]
=


0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0

 .
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(b) Let a0 + a1x+ a2x
2 + a3x

3 be an arbitrary polynomial. To show BL is a basis, we need
to show that using elements of BL we can generate this arbitrary polynomial by a linear
combination in a unique way. So we must solve

b0f0 + b1f1 + b2f2 + b3f3 = a0 + a1x+ a2x
2 + a3x

3

for the bj terms. Writing this out more completely,

b0f0 + b1f1 + b2f2 + b3f3 = b0

√
1

2
+ b1

√
3

2
x+ b2

√
5

8
(1− 3x2) + b3

√
63

8

(
x− 5x3

3

)
=

(
b0

√
1

2
+ b2

√
5

8

)
+

(
b1

√
3

2
+ b3

√
63

8

)
x+ b23

√
5

8
x2 + b3

5

3

√
63

8
x3.

Now, looking at the x2 and x3 terms we can see that

b2 =
1

3

√
8

5
a2 and b3 =

3

5

√
8

63
a3.

It then follows that

b0 =
√
2

(
a0 −

1

3
a2

)
and b1 =

√
2

3

(
a1 −

3

5
a3

)
.

This shows we have found bj uniquely so BL is indeed a basis.

(c) Now, if we take this new basis BL then we have

b0f0 + b1f1 + b2f2 + b3f3 =


b0
b1
b2
b3


where again

f0 =


1
0
0
0

 , f1 =


0
1
0
0

 , f2 =


0
0
1
0

 , f3 =


0
0
0
1

 .

This time, let us compute the transformation of each individual basis element

d

dx
f0 = 0

d

dx
f1 =

√
3

2

d

dx
f2 = −6

√
5

8
x

d

dx
f3 =

√
63

8

(
1− 5x2

)
.
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Then our goal is to write each one of these answers in terms of the basis BL as well.
That is,

d

dx
f0 = 0 = 0f0 + 0f1 + 0f2 + 0f3

d

dx
f1 =

√
3

2
=

√
1

3
f0 + 0f1 + 0f2 + 0f3

d

dx
f2 = −6

√
5

8
x = 0f0 +

√
15f1 + 0f2 + 0f3

d

dx
f3 =

√
63

8

(
1− 5x2

)
=

1

2

√
14f0 + 0f1 +

√
35f2 + 0f3.

Hence, we use these as columns for the matrix

[
d

dx

]
BL

=


0
√

1
3

0 1
2

√
14

0 0
√
15 0

0 0 0
√
35

0 0 0 0

 .

Problem 7. Let Cω(C) be the set of analytic functions (functions that have a power series
representation), i.e., functions of the form

f(x) =
∞∑
n=0

anx
n,

where an ∈ C for n = 0, 1, 2, . . . . Let us compare this with the vector space of polynomials
PN(C).

(a) Argue that Cω(C) is a vector space. Hint: show what addition and scalar multiplication
look like.

(b) Show that the space of polynomials of degree at most N , PN(C) is a subspace of Cω(C).

(c) Let f, g ∈ Cω(C) be given by

f(x) =
∞∑
n=0

anx
n and g(x) =

∞∑
n=0

bnx
n,

then define an inner product on Cω(C) by taking

⟨f, g⟩ :=
∞∑
n=0

anb
∗
n.

Now, write h(x) as a Taylor series centered at x = 0 and show that

h(k)(0) = k!⟨h, xk⟩.
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(d) Show that the N th order Taylor approximation for the function h(x) centered at x = 0
is the projection onto the subspace spanned by the functions

S = {1, x, x2, . . . , xN}.

This projection is given by

projS(h) =
N∑

n=0

⟨h, xn⟩xn.

Solution 7.

(a) For Cω(C) to be a vector space, we need the properties of addition and scalar multipli-
cation to hold and we need to identify the zero vector and identity element of the field.
First, note that 0 ∈ Cω(C) and let f, g ∈ Cω(C) be given by

f(x) =
∞∑
n=0

anx
n and g(x) =

∞∑
n=0

bnx
n.

It is clear that 0 + f = f so the function 0 acts as the zero vector. Similarly, 1 ∈ C
satisfies 1f = f . Then we can note that addition of functions is associative and

(α + β)f = (α + β)
∞∑
n=0

anx
n = α

∞∑
n=0

anx
n + β

∞∑
n=0

anx
n = αf + βf

likewise

α(f + g) = α

(
∞∑
n=0

anx
n +

∞∑
n=0

bnx
n

)
= α

∞∑
n=0

anx
n + α

∞∑
n=0

bnx
n.

In fact, the key insight is that a linear combination

αf + βg =
∞∑
n=0

(αan + βbn)x
n

so we are merely adding linear combinations of the sequences an and bn together. If
you’d like, you could use the sequence where 1 is in the jth entry of a sequence as a
basis and write

f =


a0
a1
a2
a3
...

 and g =


b0
b1
b2
b3
...

 .

In this sense, the elements in Cω(C) are nothing but sequences or infinitely tall column
vectors. However, they are special sequences that converge quickly enough to zero!

10



(b) We have already argued that PN(C) is a vector space itself and to see that it is a subspace,
just note that any polynomial function is automatically a power series. A polynomial
of degree at most N is just a power series where all the coefficients where k > N must
ak = 0. That is

p(x) =
N∑

n=0

cnx
n

is a polynomial of degree at most N and if we take ck = 0 for k > N , then

∞∑
n=0

cnx
n

shows that the polynomials are a subspace. Another way to see this is,

p =



c0
c1
c2
...
cN
0
0
...


.

(c) Based on the previous part, the function xk is given by a power series

xk =
∞∑
n=0

αnx
n

where αk = 1 but αj = 0 for all j ̸= k. Then, for h(x) =
∑∞

n=0
h(n)(0)

n!
xn we have

⟨h, xk⟩ =
∞∑
n=0

h(n)(0)

n!
α∗
n.

But the only term in the series that survives is when n = k since αj = 0 for all j ̸= k
therefore

⟨h, xk⟩ = h(k)(0)

n!
αn

Hence,
h(k)(0) = k!⟨h, xk⟩.

(d) Using the logic from the previous part,

projS(h) =
N∑

n=0

⟨h, xn⟩xn =
N∑

n=0

h(k)(0)

n!
xn.
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