
MATH 271, Homework 7, Solutions
Due November 1st
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Problem 1. Consider the following vectors in the real plane R2. We let

u⃗ = 1ê1 + 2ê2 and v⃗ = −3ê1 + 3ê2.

(a) What is the dimension of the vector space R2? Explain.

(b) Draw both u⃗ and v⃗ in the plane and label the origin.

(c) Draw the vector w⃗ = u⃗+ v⃗ in the plane.

(d) Draw the subspace spanned by u⃗.

Solution 1.

(a) The dimension of R2 is 2. For example, we can take the set of vectors ê1 and ê2 and
note that these vectors are linearly independent and span R2 and therefore are a basis
for R2. Since two vectors constitute a basis, it must be the dimension is two. This set
ê1 and ê2 is called the standard basis for R2.

(b) Shown in the plot below.

(c) Here are 0⃗, u⃗, and v⃗ along with their sum u⃗+ v⃗.

x1

x2

u⃗

v⃗

w⃗ = u⃗+ v⃗

� 0⃗

(d) The subspace spanned by u⃗ is the set of all linear combinations of u⃗. Let us refer to
this space as U and, by definition this is all linear combinations of the vector u⃗

U = Span{u⃗} = {αu⃗ | α ∈ R}.

If you’d like, this can be written as

U =

(
α
2α

)
, α ∈ R,

which is given by the following picture:

2



x1

x2

u⃗

U

� 0⃗
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Problem 2. Let a mass m1 weighing 1kg. be placed at r⃗1 = 2x̂− 3ŷ− ẑ and a mass m2 of
2kg. be placed at r⃗2 = 4ŷ− 2ẑ. Where must a mass m3 of 3kg. be placed so that the center
of mass is at the origin 0⃗?

Solution 2. One can compute the center of mass R⃗CM by

R⃗CM =
m1r⃗1 +m2r⃗2 +m3r⃗3

m1 +m2 +m3

.

Here, we know everything but r⃗3. Since we want the center of mass at the origin 0⃗, then

0⃗ =
1

m1 +m2 +m3

(m1r⃗1 +m2r⃗2 +m3r⃗3)0
0
0

 =
1

6

 2
−3
−1

+ 2

 0
4
−2

+ 3

x
y
z

 .

What we have above is three equations and three unknowns. That is, one equation for the
x̂-component, one for the ŷ-component, and one for the ẑ-component. We have

0 =
1

6
(2 + 2 · 0 + 3x)

0 =
1

6
(−3 + 2 · 4 + 3y)

0 =
1

6
(−1 + 2 · (−2) + 3z).

Taking the first, we find

0 =
1

3
+

1

2
x

−1

3
=

1

2
x

=⇒ x = −2

3
.

Next,

0 = −1

2
+

4

3
+

1

2
y

−5

6
=

1

2
y

=⇒ y = −5

3
.

Lastly, we have

0 = −1

6
− 2

3
+

1

2
z

5

6
=

1

2
z

=⇒ z =
5

3
.

Thus we have that r⃗3 = −2
3
x̂− 5

3
ŷ + 5

3
ẑ.
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Problem 3. Which of the following are linear transformations? For those that are not,
which properties of linearity (the properties (i) and (ii) in our notes) fail? Show your work.

(a) Ta : R → R given by Ta(x) =
1
x
.

(b) Tb : R3 → R2 given by

Tb

x
y
z

 =

(
x
y

)
.

(c) Tc : R → R3 given by

Tc(t) =

 t
t2

t3

 .

(d) Td : R2 → R3 given by

Td

(
x
y

)
=

x+ y
x+ y
x+ y

 .

Solution 3.

(a) This transformation fails both properties. For (i), take

Ta(x+ y) =
1

x+ y
̸= 1

x
+

1

y
= Ta(x) + Ta(y).

For (ii), take

Ta(αx) =
1

αx
̸= α

1

x
= αTa(x).

(b) This is a linear transformation. To see (i) holds, take

Tb(u⃗+ v⃗) = Tb

ux

uy

uz

+

vx
vy
vz


= Tb

ux + vx
uy + vy
uz + vz


=

(
ux + vx
uy + vy

)
=

(
ux

uy

)
+

(
vx
vy

)
= Tb(u⃗) + Tb(v⃗).
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And for (ii), we take

Tb(αv⃗) = Tb

α

vx
vy
vz


= Tb

αvx
αvy
αvz


=

(
αvx
αvy

)
= α

(
vx
vy

)
= αTb(v⃗).

(c) This is not a linear transformation as both properties fail. Indeed, for (i) we take

Tc(u⃗+ v⃗) = Tc

ux

uy

uz

+

vx
vy
vz


= Tc

ux + vx
uy + vy
uz + vz


=

 ux + vx
(uy + vy)

2

(uz + vz)
3

 ,

whereas

Tc(u⃗) + Tc(v⃗) = Tc

ux

uy

uz

+ Tc

vx
vy
vz


=

ux

u2
y

u3
z

+

vx
v2y
v3y


=

ux + vx
u2
y + v2y

u3
z + v3z

 .

Note that u2
y + v2y ̸= (uy + vy)

2 and u3
z + v3z ̸= (uz + vz)

3.
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To see that (ii) does not hold, take

Tc(αv⃗) = Tc

αvx
αvy
αvz


=

 αvx
α2v2y
α3v3z

 ,

whereas

αTc(v⃗) =

αvx
αv2y
αv3z

 .

These are clearly not equal for every scalar α.

(d) This function is linear. For (i), we have

Td(u⃗+ v⃗) = Td

(
ux + vx
uy + vy

)

=

(ux + vx) + (uy + vy)
(ux + vx) + (uy + vy)
(ux + vx) + (uy + vy)


=

ux + uy

ux + uy

ux + uy

+

vx + vy
vx + vy
vx + vy


= T (u⃗) + T (v⃗).

And for (ii) we have

Td(αv⃗) = Td

(
αvx
αvy

)

=

αvx + αvy
αvx + αvy
αvx + αvy


= αTd(v⃗).

7



Problem 4.

(a) We can reflect an arbitrary vector in the plane by defining a function that reflects the
basis vectors and extending the function with linearity. Let R : R2 → R2 be a function
be defined by

R(ê1) = −ê1 and R(ê2) = ê2.

Let v⃗ = v1ê1 + v2ê2 and let

R(v⃗) = v1R(ê1) + v2R(ê2).

Show that R reflects the vector u⃗ = 1ê1 + 2ê2 about the x2-axis and draw a picture.

(b) We can rotate a vector in the plane by first rotating the basis vectors ê1 and ê2. Define
a linear function J : R2 → R2 defined by

J(ê1) = ê2 and J(ê2) = −ê1.

Show that J rotates u⃗ by π/2 in the counterclockwise direction and draw a picture.

Solution 4.

(a) So, we can take the vector u⃗ and then we have

R(u⃗) = 1R(ê1) + 2R(ê2) = −ê1 + 2ê2.

So we can plot both u⃗ and R(u⃗) in the plane:

x1

x2

u⃗R(u⃗)

We can see that this is definitely the reflection of the vector u⃗ across the y-axis.

(b) We can now do this for the function T to get

J(u⃗) = J(ê1) + 2J(ê2) = ê2 − 2ê1.

Then we can plot both u⃗ and J(u⃗) in the plane:

8



x1

x2

u⃗

J(u⃗)

We can see that this is definitely the rotation of the vector u⃗ an angle of π/2 in the
counter-clockwise direction.

Problem 5. Let S be the set of general solutions to the following second order homogeneous
linear differential equation

x′′ + f(t)x′ + g(t)x = 0.

Show that this set S is a vector space over the field of complex numbers.

Solution 5. We can remember these requirements via the acronym CANI ADDU. So we
have for the vector addition properties

� Commutivity: If we have two solutions x(t) and y(t) in the set S, then we know

x(t) + y(t) = y(t) + x(t)

is satisfied.

� Associativity: If we have three solutions x(t), y(t), z(t) ∈ S, then we know

(x(t) + y(t)) + z(t) = x(t) + (y(t) + z(t))

is satisfied.

� Neutral Element: We have that there exists the zero function 0 ∈ S such that

0 + x(t) = x(t).

This is true since 0 is a solution to the ODE.

� Inverses: Given an x(t) ∈ S, we have the function −x(t) ∈ S such that

x(t) + (−x(t)) = 0.

This is true since x is a solution implies that −x also is.
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Then we have the scalar multiplication properties

� Associativity: If we have α, β ∈ C and x(t) ∈ S then we have

α(βx(t)) = (αβ)x(t)

holds.

� Distribution: Given α, β ∈ C and x(t) ∈ S we have

(α + β)x(t) = αx(t) + βx(t)

holds.

� Distribution: Given α ∈ C and x(t), y(t) ∈ S, we have

α(x(t) + y(t)) = αx(t) + αy(t)

holds.

� Unit element: We have 1 ∈ C satisfies that for any x(t) ∈ S that

1x(t) = x(t).

Remark 1. Not all vector spaces will have such obvious neutral elements, 0⃗. Likewise, not
all fields will have an obvious unit element 1. This is why we must be a bit careful at times.
Take for example the vector space whose field elements are TRUE and FALSE values.

Now, the biggest requirement for a vector space is that linear combinations of vectors
actually produce another vector. This is quite obvious in the plane R2 for example, but here,
it is not necessarily obvious. To see this, take α, β ∈ C and x(t), y(t) ∈ S and we consider
the linear combination

z(t) = αx(t) + βy(t).

We then wish to show that this linear combination (or superposition) is a solution as well.
So we plug in z(t) into our equation as follows

z′′(t) + f(t)z′(t) + g(t)z(t) = (αx′′(t) + βy′′(t)) + f(t)(αx′(t) + βy′(t)) + g(t)(αx(t) + βy(t))

= α [x′′(t) + f(t)x′(t) + g(t)x(t)] + β [y′′(t) + f(t)y′(t) + g(t)y(t)]

= 0,

since we knew that x(t) and y(t) themselves are solutions. Thus, z(t) is as well and now we
have that S is a vector space. It is worth noting that we have shown this result in previous
work.

10



Problem 6. Let P3(C) be the vector space of polynomials of degree at most 3 with coeffi-
cients in C with variable x. For example,

f(x) = x2 + 1 ∈ P3(C).

(a) Write down a basis for P3(C).

(b) What is the dimension of the vector space P3(C).

(c) Let d
dx
: P3(C) → P3(C). Argue that d

dx
is a linear transformation.

(d) What is the kernel (nullspace) of d
dx
? What is the image (range) of d

dx
?

Solution 6.

(a) A basis for a space is a linearly independent set of vectors that spans the space. First,
the most general polynomial of degree at most 3 with complex coefficients assumes the
form

p(x) = a0 + a1x+ a2x
2 + a3x

3

where aj ∈ C for j = 0, 1, 2, 3. Here, we are treating x as a variable and we are not
allowed to pick specific values for it – we must leave it as is. We should also notice that
specifying these polynomials in P3(C) requires 4 coefficients – one for 1 (a0), one for x
(a1), one for x2 (a2), and finally one for x3 (a3). Let’s take the set

B = {1, x, x2, x3}

and see if this suffices as a basis.

i. (Spaning set) First we show this set spans P3(C). We have the arbitrary element
p(x), and a linear combination of our set looks like

α01 + α1x+ α2x
2 + α3x

3.

Setting this equal to p(x) we notice that αj = aj. So our set B spans P3(C).
ii. (Linearly independent) To see B is linearly independent, suppose that

α01 + α1x+ α2x
2 + α3x

3 = 0.

Then, it must be that all αj = 0 for j = 0, 1, 2, 3 and therefore this set is linearly
independent.

By the two points above, we have shown B is a basis.

Remark 2. There are infinitely many other bases for P3(C), but this one is standard in
a sense. Other bases may be nicer, for example, the legendre polynomials are a basis as
well. These are,{

f0 =

√
1

2
, f1 =

√
3

2
x, f2 =

√
5

8
(1− 3x2), f3 =

√
63

8

(
x− 5x3

3

)}
I’d claim this basis is nicer in certain circumstances. For example, we have shown it is
orthogonal and we also know they are in some sense solutions to a Schrödinger equation
(they are eigenfunctions).

11



(b) By (a), we have a basis of length 4, therefore the dimension is 4.

(c) Let p(x), q(x) ∈ P3(C) then

d

dx
(αp+ βq) =

d

dx
(αp) +

d

dx
(βq) by the sum rule

= α
d

dx
p+ β

d

dx
q by the constant multiple rule,

which shows d
dx

is linear. We can see that linearity is nothing but a combination of a
sum and constant multiple rule.

(d) Applying d
dx

to p(x) we have

d

dx
p(x) =

d

dx
(a0 + a1x+ a2x

2 + a3x
3)

= a1 + 2a2x+ 3a3x
2.

The above shows that a0 was in the kernel of d
dx
, so we can put

ker

(
d

dx

)
= Span{1}.

This is nothing but the fact you already know which states that derivatives of constants
are zero. We also can see that after applying the derivative we end up with an arbitrary
polynomial of degree at most 2. Therefore, we have

im

(
d

dx

)
= Span{1, x, x2}.
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