MATH 271, HOMEWORK 7 Due November 3rd

Problem 1. Consider the following vectors in the real plane \mathbb{R}^2 . We let

 $\vec{u} = 1\hat{x} + 2\hat{y}$ and $\vec{v} = -3\hat{x} + 3\hat{y}$.

- (a) What is the dimension of the vector space \mathbb{R}^2 ? Explain.
- (b) Draw both \vec{u} and \vec{v} in the plane and label the origin.
- (c) Draw the vector $\vec{w} = \vec{u} + \vec{v}$ in the plane.
- (d) Draw the subspace spanned by \vec{u} .

Problem 2. Let a mass m_1 weighing 1kg. be placed at $\vec{r}_1 = 2\hat{x} - 3\hat{y} - \hat{z}$ and a mass m_2 of 2kg. be placed at $\vec{r}_2 = 4\hat{y} - 2\hat{z}$. Where must a mass m_3 of 3kg. be placed so that the center of mass is at the origin $\vec{0}$?

Problem 3. Which of the following are linear transformations? For those that are not, which properties of linearity (the properties (i) and (ii) in our notes) fail? Show your work.

- (a) $T_a \colon \mathbb{R} \to \mathbb{R}$ given by $T_a(x) = \frac{1}{x}$.
- (b) $T_b \colon \mathbb{R}^3 \to \mathbb{R}^2$ given by

$$T_b \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}.$$

(c) $T_c \colon \mathbb{R} \to \mathbb{R}^3$ given by

$$T_c(t) = \begin{pmatrix} t \\ t^2 \\ t^3 \end{pmatrix}.$$

(d)
$$T_d \colon \mathbb{R}^2 \to \mathbb{R}^3$$
 given by

$$T_d \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x+y \\ x+y \\ x+y \end{pmatrix}.$$

Problem 4.

(a) We can reflect an arbitrary vector in the plane by defining a function that reflects the basis vectors and extending the function with linearity. Let $R: \mathbb{R}^2 \to \mathbb{R}^2$ be a function be defined by

$$R(\hat{\boldsymbol{x}}) = -\hat{\boldsymbol{x}}$$
 and $R(\hat{\boldsymbol{y}}) = \hat{\boldsymbol{y}}$

Let $\vec{\boldsymbol{v}} = \alpha_1 \hat{\boldsymbol{x}} + \alpha_2 \hat{\boldsymbol{y}}$ and let

$$R(\vec{\boldsymbol{v}}) = \alpha_1 R(\hat{\boldsymbol{x}}) + \alpha_2 R(\hat{\boldsymbol{y}}).$$

Show that R reflects the vector $\vec{u} = 1\hat{x} + 2\hat{y}$ about the y-axis and draw a picture.

(b) We can rotate a vector in the plane by first rotating the basis vectors \hat{x} and \hat{y} . Define a linear function $J: \mathbb{R}^2 \to \mathbb{R}^2$ defined by

$$J(\hat{\boldsymbol{x}}) = \hat{\boldsymbol{y}}$$
 and $J(\hat{\boldsymbol{y}}) = -\hat{\boldsymbol{x}}.$

Show that J rotates \vec{u} by $\pi/2$ in the counterclockwise direction and draw a picture.

Problem 5. Let S be the set of general solutions to the following second order homogeneous linear differential equation

$$x'' + f(t)x' + g(t)x = 0.$$

Show that this set S is a vector space over the field of complex numbers.

Problem 6. Let $P_3(\mathbb{C})$ be the vector space of polynomials of degree at most 3 with coefficients in \mathbb{C} with variable x. For example,

$$f(x) = x^2 + 1 \in P_3(\mathbb{C}).$$

- (a) Write down a basis for $P_3(\mathbb{C})$.
- (b) What is the dimension of the vector space $P_3(\mathbb{C})$.
- (c) Let $\frac{d}{dx}: P_3(\mathbb{C}) \to P_3(\mathbb{C})$. Argue that $\frac{d}{dx}$ is a linear transformation.
- (d) What is the kernel (nullspace) of $\frac{d}{dx}$? What is the image (range) of $\frac{d}{dx}$?