MATH 271, HOMEWORK 5 DUE OCTOBER 11TH

Problem 1 (Euler's Formula). Given that

$$\cos(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}$$
 and $\sin(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!},$

- (a) Plot the approximations of both $\cos(x)$ and $\sin(x)$ versus the original function for order 1,5,20 over the domain $[-4\pi, 4\pi]$.
- (b) Show that

$$e^{ix} = \cos(x) + i\sin(x),$$

using the power series representation for the exponential function e^x .

- (c) Show that cosine is even, $\cos(-x) = \cos(x)$, and that sine is odd $\sin(-x) = -\sin(x)$.
- (d) Compute $\frac{d}{dx}e^{ix}$ using the series representation and show that $\frac{d}{dx}\cos(x) = -\sin(x)$ and $\frac{d}{dx}\sin(x) = \cos(x)$.

Problem 2. Consider the function

$$f(x) = \frac{1}{1-x}$$

- (a) Compute the Taylor series centered at a = 0 for the function.
- (b) Find the antiderivative $\int \frac{dx}{1-x}$ using the Taylor series for f(x) found in (a).
- (c) Write down the Taylor series for $\ln(1-x)$ centered at a = 0 and compare to your answer in (b).

Problem 3.

- (a) Compute the Taylor series centered at a = 0 for $f(x) = e^{-\frac{x^2}{2}}$.
- (b) Use the Taylor series for e^x and modify it to find a power series for f(x). Is this the same as the series in (a)?
- (c) Plot the original function f(x) compared to the first, second, third, and fourth term approximation for the series on the same graph.

Problem 4. How can we approximate a (possibly complicated) function by using a power series? Why is this useful (specifically for computation on a computer)?

Problem 5 (Explicit Euler Method). Consider the differential equation x' = kx where $k \in \mathbb{C}$ is a complex parameter for the system. Note that the solution to this equation given the initial condition x(0) = 1 is $x = e^{kt}$.

(a) Suppose we want to find an approximation to a solution using a computer. Let t_0 be some arbitrary time, define δt to some fixed change in the input variable t and let $\delta x = x(t_0 + \delta t) - x(t_0)$ be the corresponding change in the output x. Compute the first order Taylor approximation of x at the point t_0 to see that

$$x(t_0 + \delta t) \approx x(t_0) + x'(t_0)(\delta t) \tag{1}$$

from which you can then note that

$$x'(t_0) \approx \frac{\delta x}{\delta t} \tag{2}$$

(b) Define the explicit Euler approximation sequence $\{x_{\tau}\}_{\tau=0}^{T}$ so that $x(t_{0}) = x_{0}$ and at later times $x(t_{0} + \tau \delta t) = x_{\tau}$. Show using the previous equations, the ODE itself, and the fact that $x_{\tau-1} + \delta x = x_{\tau}$ means can make a sequence

$$x_{\tau} = x_{\tau-1} + k x_{\tau-1} \delta t.$$

- (c) Let k = 1, $\delta t = 0.01$, $t_0 = 0$, and let x(0) = 1. Plot the explicit Euler approximation sequence using the following URL http://www.calcul.com/show/calculator/recursive. Compare this graph to the solution $x(t) = e^t$.
- (d) Let k = -1, $\delta t = 2$, $t_0 = 0$, and let x(0) = 1. Plot the approximation again. Is there something wrong? How does this compare to what the solution should be?