
MATH 271, Homework 2, Solutions

Problem 1. Consider the autonomous (Hamilton) equation

x′ = ix

with initial condition x(0) = 1. Hint: Think about what this is saying – the velocity of the
particle x′ is a rotation by π/2 of the position x.

(a) Find the particular solution to this equation.

(b) Plot the function x(t) in the complex plane.

(c) Show that your solution x(t) solves the ODE

x′′ = −x

which is essentially Worksheet 1 Problem 11. It is worth thinking about this too – the
acceleration of a particle x′′ is in the opposite direction of the position x, i.e., centripetal
motion.

Solution 1.

(a) This equation is separable so we can do the following.

x′ =
dx

dt
= ix

=⇒ 1

x
dx = idt.

Here we integrate both sides to get

ln(x) = it+ C

which gives our general solution
x = Aeit.

One could also just recognize this as a familiar equation x′ = k where we choose our
parameter k = i.

(b) We have that
eit = cos(t) + i sin(t)

and so we plot the real part of our solution x as cos(t) and the imaginary part as sin(t)
using Desmos.
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The colors in the plot indicate at what time we are at along the curve and I used the
interval t ∈ [0, 2π]. At t = 0 the curve starts bright green and as t changes to 2π the
color shifts to red.

(c) Since we have x = Aeit we can see that

x′ = iAeit = ix,

which is what we expect since x was a solution to that ODE in the first place. To check
x′′ = −x we just take the second derivative of our x to get

x′′ = (ix)′

= i(x)′

= i(ix)

= −x.

So, what we can think of what we have done here just a bit. We could start with a second
order problem x′′ = −x and convert it into a first order problem just by using taking
some kind of square root of the second order equation to get the first order equation
x′ = ix. This is why I’d refer to this as the Hamilton equation since this is something
that can be done with many second order autonomous problems, even those that are
higher dimensional systems.

Essentially it is a shift from describing the acceleration of a particle at some position x
to describing the velocity at that same position x. In the following picture I draw the
velocity as an arrow that I call tangent and the acceleration is the normal.
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The velocity at t = 0 is x′(0) = i which tells us the velocity points directly upward and
x′′(0) = −1 which tells us the velocity points towards the origin, for example. Given
x(0) = 1 = ei·0, you can see that i = ei

π
2 rotates the position by π/2 radians since

−1 = eiπ rotates the position by π. All of this must also repeat every t = 2π, so the
solution is periodic with period 2π.

Problem 2. Consider the following autonomous equation.

x′ = −x2.

(a) Draw the phase line for this system. What are the equilibrium point(s)? Which equilibria
are stable? Which are unstable? Explain.

(b) Find a general solution to the ODE.

(c) Explain how your general solution fits the qualitative behavior expected from the phase
line. That is, can you show that limits of your general solution match your qualitative
analysis?

(d) Can x(0) = 0 be an initial condition? Explain. Hint: your analysis from the phase line
may prove to be more useful than the general solution you found.

Solution 2.

(a) The phase line is as follows:

−1 0 1

x

The equilibria are found by setting x′ = 0, hence we have

x′ = 0 = x2

3



and so we have this condition satisfied when x = 0. Thus, there is just one equilibrium
point.

The equilibrium x = 0 is unstable since x′ is negative for x < 0 and for x > 0. In partic-
ular, if I choose an initial condition x(0) > 0, then the particular solution corresponding
to this initial condition will limit to x = 0. If I choose an initial condition x(0) < 0, then
the particular solution corresponding to this initial condition will limit to −∞. Since
solutions do not approach x = 0 from both sides, x = 0 can’t be stable.

(b) We have seen this equation arise from studying chemical reactions. Specifically, this
equation could model

2x
k=1−−→ Products.

This equation is also separable. Which means we can solve by

x′ =
dx

dt
= −x2

⇐⇒ −dx

x2
= dt.

We can then integrate both sides to find

1

x
= t+ C.

Then we solve for x to find our general solution

x =
1

t+ c
.

(c) Let us take the condition x(0) = 1 > 0, then our particular solution is then

x(t) =
1

t+ 1
.

Now, if we let t increase, then
lim
t→∞

x(t) = 0

which agrees with our phase line and analysis from before in part (a).

Likewise, if we take x(0) = −1 < 0, then we have the particular solution

x(t) =
1

t− 1
.

Now, if we let t increase, then we run into an issue when t = 1 since the denominator
goes to zero. However, we can see that

lim
t→1−

x(t) = −∞.

This again agrees with our phase diagram.
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(d) Since this equation could model the above reaction, we should expect that the initial
condition of x(0) = 0 works. Why is that? If we start with no reactants (i.e., this initial
condition), then no reaction should occur! We can see that by noting

x′(0) = −x(0)2 = 0

which shows that x′(0) = 0 given this initial condition. In that case the solution is trivial
and no dynamics occur. Said succinctly, starting at an equilibrium point will lead to a
steady-state solution where no motion (or in this case, reaction) will occur.

However, just by looking at solving the equation we have from our general solution

x(0) =
1

0 + c
=

1

c

it is not really possible to solve this equation. However, if we consider something like
the limc→∞

1
t+c

= 0 then this may make some sense. Below is a graph of many different
values of c. Notice that they approach the case x(t) = 0 as a solution as t → ∞. So in
the case that x(0) = 0 the particular solution would be

x(t) = 0.

5



Problem 3. Let y be a function of x and consider the following differential equation.

y′ = y cos(x).

(a) What is the order of this equation? Is the equation separable? Explain.

(b) Plot an approximation of the slope field for this equation using this Desmos link: https:
//www.desmos.com/calculator/e93gktwtfo. Note that you will have to modify the
g(x, y) equation in that page.

(c) Find the general solution to this equation.

(d) Given the initial data y(0) = 1, find the particular solution.

(e) Plot this function over your slope field. Explain how you could have approximated this
solution using just the slope field.

(f) Explain in words what the solution describes if we let y(x) be the position of some object
and x represents time.

Solution 3.

(a) This is a first order equation that is also separable. To see that it is separable since we
need to have

y′ = f(x)g(y).

Here, we can let f(x) = cos(x) and g(y) = y to write our equation in a separable form.

(b) Here is an approximation of the slope field for this equation:

Figure 1: Slope field for the equation y′ = y cos(x).
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(c) We can find the general solution by

dy

dx
= y cos(x)∫

1

y
dy =

∫
cos(x)dx

ln(y) = sin(x) + C.

Then we solve for y to find

y = esin(x)+C = eC · esin(x)

= Aesin(x),

which is our general solution.

(d) If we have y(0) = 1 then we plug this into our general solution

1 = x(0) = Aesin(0) = A

so that A = 1. Thus the particular solution is

y(x) = Aesin(x).

We can plot this solution over the slope field as follows:

Figure 2: The particular solution y(x) = esin(x) (in dashed black) plotted over the previous
slope field.

(e) The solution represents a system that oscillates back and forth. However, it is not
oscillation as we see with a Hookean spring and a mass system. In this case, this would
a oscillation due to something else entirely. Notice, for example, that the valleys and
peaks are not the same width.
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Problem 4. Consider the differential equation

x′ =
x+ t

t
.

(a) Let f(x, t) = x+t
t
. Show that f(x, t) = f(λx, λt).

(b) Given (a) holds, use the change of variables u = x
t
to rewrite the differential equation as

a separable equation in terms of u.

(c) Find the general solution to the equation and write your solution in terms of the original
variables t and x.

Solution 4.

(a) To show this, we check to see if the equality is true by

f(λx, λt) =
λx+ λt

λt

=
λ(x+ t)

λt

=
x+ t

t
= f(t).

So the property holds, which leads us to (b).

(b) Now, we let u = x
t
which allows us to say x = tu. We can then take

x′ = f(x, t) = f(tu, t) =
tu+ t

t
=

t(u+ 1)

t
= u+ 1.

Given our substitution, we can also take

x′ = (tu)′ = u+ tu′

and substitute this back in our other expression to get

u+ tu′ = u+ 1.

We can simplify this a bit

u+ tu′ = u+ 1

tu′ = 1

u′ =
1

t
.

This is a separable equation.
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(c) Now we can solve the previous equation using separation. So we have

du

dt
=

1

t∫
du =

∫
dt

t

u = ln(t) + C.

Recall that we let u = x
t
and to get back to the original variable we need to solve for x.

So we take

u =
x

t
= ln(t) + C

x = t ln(t) + Ct.

So the general solution to our original equation is

x(t) = t ln(t) + Ct.
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Problem 5. Find the general solution to the following equation.

tx′ + 2x =
sin(t)

t
.

Show that your solution is correct. (Hint: can you use an integrating factor? )

Solution 5. Note that this is a first order linear equation if we divide the whole expression
by t. We can see this by,

tx′ + 2x =
sin(t)

t

x′ +
2

t
x =

sin(t)

t2
.

This matches the form of a first order linear equation which is typically written as

x′ + f(t)x = g(t).

So note that in our case, f(t) = 2
t
and g(t) = sin(t)

t2
. Given that, we can solve this equation

using the integrating factor technique. For that, we have the integrating factor

µ = e
∫
f(t)dt

= e
∫

2
t
dt

= e2 ln(t)

= eln(t
2)

= t2.

Now, we have µ and we can find x(t) by

x =
1

µ(t)

∫
µ(t)g(t)dt

=
1

t2

∫
t2
sin(t)

t2
dt

=
1

t2

∫
sin(t)dt

= − 1

t2
cos(t) +

C

t2
.

So our general solution is

x(t) = − 1

t2
cos(t) +

C

t2
.
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