
MATH 271, Homework 8, Solutions

Problem 1. Let a mass m1 weighing 1kg. be placed at ~r1 = 2x̂− 3ŷ− ẑ and a mass m2 of
2kg. be placed at ~r2 = 4ŷ− 2ẑ. Where must a mass m3 of 3kg. be placed so that the center
of mass is at the origin ~0?

Solution 1. One can compute the center of mass ~RCM by

~RCM =
m1~r1 +m2~r2 +m3~r3

m1 +m2 +m3

.

Here, we know everything but ~r3. Since we want the center of mass at the origin ~0, then

~0 =
1

m1 +m2 +m3

(m1~r1 +m2~r2 +m3~r3)0
0
0

 =
1

6

 2
−3
−1

+ 2

 0
4
−2

+ 3

xy
z

 .

What we have above is three equations and three unknowns. That is, one equation for the
x̂-component, one for the ŷ-component, and one for the ẑ-component. We have

0 =
1

6
(2 + 2 · 0 + 3x)

0 =
1

6
(−3 + 2 · 4 + 3y)

0 =
1

6
(−1 + 2 · (−2) + 3z).

Taking the first, we find

0 =
1

3
+

1

2
x

−1

3
=

1

2
x

=⇒ x = −2

3
.

Next,

0 = −1

2
+

4

3
+

1

2
y

−5

6
=

1

2
y

=⇒ y = −5

3
.
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Lastly, we have

0 = −1

6
− 2

3
+

1

2
z

5

6
=

1

2
z

=⇒ z =
5

3
.

Thus we have that ~r3 = −2
3
x̂− 5

3
ŷ + 5

3
ẑ.
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Problem 2. Which of the following are linear transformations? For those that are not,
which properties of linearity (the properties (i) and (ii) in our notes) fail? Show your work.

(a) Ta : R→ R given by Ta(x) = 1
x
.

(b) Tb : R3 → R2 given by

Tb

xy
z

 =

(
x
y

)
.

(c) Tc : R→ R3 given by

Tc(t) =

 t
t2

t3

 .

(d) Td : R2 → R3 given by

Td

(
x
y

)
=

x+ y
x+ y
x+ y

 .

Solution 2.

(a) This transformation fails both properties. For (i), take

Ta(x+ y) =
1

x+ y
6= 1

x
+

1

y
= Ta(x) + Ta(y).

For (ii), take

Ta(αx) =
1

αx
6= α

1

x
= αTa(x).

(b) This is a linear transformation. To see (i) holds, take

Tb(~u+ ~v) = Tb

uxuy
uz

+

vxvy
vz


= Tb

ux + vx
uy + vy
uz + vz


=

(
ux + vx
uy + vy

)
=

(
ux
uy

)
+

(
vx
vy

)
= Tb(~u) + Tb(~v).
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And for (ii), we take

Tb(α~v) = Tb

α
vxvy
vz


= Tb

αvxαvy
αvz


=

(
αvx
αvy

)
= α

(
vx
vy

)
= αTb(~v).

(c) This is not a linear transformation as both properties fail. Indeed, for (i) we take

Tc(~u+ ~v) = Tc

uxuy
uz

+

vxvy
vz


= Tc

ux + vx
uy + vy
uz + vz


=

 ux + vx
(uy + vy)

2

(uz + vz)
3

 ,

whereas

Tc(~u) + Tc(~v) = Tc

uxuy
uz

+ Tc

vxvy
vz


=

uxu2y
u3z

+

vxv2y
v3y


=

ux + vx
u2y + v2y
u3z + v3z

 .

Note that u2y + v2y 6= (uy + vy)
2 and u3z + v3z 6= (uz + vz)

3.
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To see that (ii) does not hold, take

Tc(α~v) = Tc

αvxαvy
αvz


=

 αvx
α2v2y
α3v3z

 ,

whereas

αTc(~v) =

αvxαv2y
αv3z

 .

These are clearly not equal for every scalar α.

(d) This function is linear. For (i), we have

Td(~u+ ~v) = Td

(
ux + vx
uy + vy

)

=

(ux + vx) + (uy + vy)
(ux + vx) + (uy + vy)
(ux + vx) + (uy + vy)


=

ux + uy
ux + uy
ux + uy

+

vx + vy
vx + vy
vx + vy


= T (~u) + T (~v).

And for (ii) we have

Td(α~v) = Td

(
αvx
αvy

)

=

αvx + αvy
αvx + αvy
αvx + αvy


= αTd(~v).
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Problem 3. Consider the linear transformation J : R2 → R2 defined by

J(x̂) = ŷ and J(ŷ) = −x̂.

This linear transformation is fundamental in understanding how we can reconstruct complex
numbers using matrices.

(a) Show that J2 = J ◦ J = −1.

(b) Determine a matrix representation for J and denote it by [J ].

(c) Recall that we can represent a complex number as z = x+ iy and that we can represent

z as a vector in R2 as ~ζ = xx̂+ yŷ. Show that J~ζ corresponds to iz.

(d) We can completely reconstruct a representation of C by using a matrix representation.
In particular, we can take

[z] = x[I] + y[J ].

Show that we recover the complex addition and multiplication using this representation.

(e) We can represent a unit complex number as z = eiθ. Show that the representation
described before leads to

[z] =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
.

Solution 3. (a) Let ~v = v1x̂+ v2ŷ be some arbitrary vector in R2. Then,

J2(~v) = J(J(~v)) = J(J(v1x̂+ v2ŷ))

= J(v1J(x̂) + v2J(ŷ))

= J(v1ŷ − v2x̂)

= v1J(ŷ)− v2J(x̂)

= −v1x̂− v2ŷ
= −~v.

So, yes, J2 acts like scaling by -1.

(b) We determine a matrix for J by using the definition of J on x̂ and ŷ. In particular,

[J ] =

 | |
J(x̂) J(ŷ)
| |

 =

(
0 −1
1 0

)
.

One can check here that [J ]2 = −[I], where [I] is the identity matrix. This confirms that
[J ] satisfies the relationship we saw in (a).

(c) In the complex plane, we let z = x+ iy and we can note that

iz = −y + ix.
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Now, we can think of z as a vector in R2 by noticing that the vector ~ζ = xx̂ + yŷ
corresponds to the same exact point geometrically. Then, if we apply J we have

J~ζ = −yx̂+ xŷ,

which is exactly how z was transformed when we multiplied by i. Keep in mind that i
rotates a complex number z by π/2 in the counterclockwise direction and J does the same

to vectors ~ζ. To see this most fully, consider drawing a picture of both transformations.

(d) In the complex plane, we can take two complex numbers z1 = x1 + iy1 and z2 = x2 + iy2.
Then we have

z1 + z2 = (x1 + x2) + i(y1 + y2) and z1z2 = (x1x2 − y1y2) + i(x1y2 + x2y1).

Notice that addition is componentwise and keep track of this result from the multiplica-
tion.

Now, we can consider two matrices [z1] = x1[I] + y1[J ] and [z2] = x2[I] + y2[J ] and see
what we get through addition and multiplication. We have

[z1] + [z2] = (x1 + x2)[I] + (y1 + y2)[J ].

This is due to how matrices add componentwise and we can see that this corresponds to
the addition in C. Next, we have

[z1][z2] = (x1[I] + y1[J ])(x2[I] + y2[J ])

= x1x2[I]2 + y1x2[J ][I] + x1y2[I][J ] + y1y2[J ]2

= x1x2[I] + y1x2[J ] + x1y2[J ]− y1y2[I]

= (x1x2 − y1y2)[I] + (x1y2 + x2y1)[J ].

Note that I use the facts [J ][I] = [I][J ] = [J ], [I]2 = [I], and from (a) we know [J ]2 =
−[I]. If we take a look at the end result, we can see that this is the same multiplication
result as z1z2 in C.

(e) Using our knowledge from the previous problem, and Euler’s formula, we know that we
can take

[eiθ] = cos(θ)[I] + sin(θ)[J ].

Writing out the matrices explicitly yields

[eiθ] =

(
cos(θ) 0

0 cos(θ)

)
+

(
0 − sin(θ)

sin(θ) 0

)
=

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
,

as intended.

Remark 1. If one goes to look up a rotation matrix for R2, you will find the matrix you
found in (e). So, this goes to show that complex arithmetic captures rotations nicely through
Euler’s formula. Moreover, the matrix representation for a complex number is faithful in
describing all that we need.
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Problem 4. Write down the matrix for the following linear transformation T : R3 → R3:

T

xy
z

 =

x+ y + z
2x

3y + z

 .

Solution 4. We need that

[T ]

xy
z

 =

x+ y + z
2x

3y + z


via matrix multiplication. Since the input vector is a 3-dimensional vector, and the output
vector is 3-dimensional, we must have that [T ] is a 3× 3-matrix. Hence,

[T ] =

t11 t12 t13
t21 t22 t23
t31 t32 t33

 .

Then we havet11 t12 t13
t21 t22 t23
t31 t32 t33

xy
z

 =

t11x+ t12y + t13z
t21x+ t22y + t23z
t31x+ t32y + t33z

 =

x+ y + z
2x

3y + z

 .

If we match the coefficients on the x, y, and z, we find that

[T ] =

1 1 1
2 0 0
0 3 1

 .
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Problem 5. Take the following matrices:

[A] =

(
4 3 10 2
1 1 0 9

)
, [B] =

 8 5 8
10 9 2
4 6 3

 , [C] =


0 0 9
7 9 9
1 9 9
3 3 1


(a) Compute either [A][C] or [C][A] and state which multiplication is not possible.

(b) Compute either [B][C] or [C][B] and state which multiplication is not possible.

(c) Can you add any of these matrices?

(d) Describe each matrix as linear transformation T : Rm → Rn. What is m and n for each?
How does this relate to the number of rows and columns?

Solution 5.

(a) The matrix [A] is a 2× 4 matrix and matrix [C] is a 4× 3 matrix. So we can compute
[A][C] but not [C][A]. Given that, we also expect the output to be a 2× 3 matrix. So,
we have

[A][C] =

(
4 3 10 2
1 1 0 9

)
0 0 9
7 9 9
1 9 9
3 3 1

 =

(
37 123 155
34 36 27

)
.

(b) [B] is a 3× 3 matrix so we can take [C][B] but not [B][C]. We get

[C][B] =


0 0 9
7 9 9
1 9 9
3 3 1


 8 5 8

10 9 2
4 6 3

 =


36 54 27
182 170 101
134 140 53
58 48 33

 .

(c) We can always add a matrix to itself, so, for example [A] + [A], [B] + [B], and [C] + [C]
make sense. However, since the dimensions of [A], [B], and [C] all differ, we cannot add
in any other way.

(d) The number of columns of a matrix denotes the input dimension m, and the number of
rows denotes the output dimension n. So

A : R4 → R2, B : R3 → R3, C : R3 → R4.
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Problem 6. Solve the following equation.1 1 1
1 2 1
1 2 2

xy
z

 =

 6
8
11

 .

Solution 6. First, we create the augmented matrix 1 1 1 6
1 2 1 8
1 2 2 11

 .

We can subtract R1 from both R2 and R3 to get 1 1 1 6
0 1 0 2
0 1 1 5

 .

Then subtract R3 from R1 to get  1 0 0 1
0 1 0 2
0 1 1 5

 .

Finally, subtract R2 from R3 to get 1 0 0 1
0 1 0 2
0 0 1 3

 .

This yields our result in the right most column in that x = 1, y = 2, and z = 3.
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