MATH 271, HOMEWORK 7, Solutions Due November 1st

Problem 1. Let S be the set of general solutions x(t) to the following homogeneous linear differential equation

$$x'' + f(t)x' + g(t)x = 0.$$

Show that this set S is a vector space over the complex numbers by doing the following. Let $x(t), y(t), z(t) \in S$ be solutions to the above equation and let $\alpha, \beta \in \mathbb{C}$ be complex scalars.

- (a) Write down the eight requirements for S to be a vector space.
- (b) Identify the $\vec{\mathbf{0}} \in S$ and $1 \in \mathbb{C}$.
- (c) Show that $\alpha x(t) + \beta y(t) \in S$. That is, show that a superposition of solutions is also a solution. *Hint: We have shown this before.*
- **Solution 1.** (a) We can remember these requirements via the acronym CANI ADDU. So we have for the vector addition properties
 - Commutivity: If we have two solutions x(t) and y(t) in the set S, then we know

$$x(t) + y(t) = y(t) + x(t)$$

is satisfied.

• Associativity: If we have three solutions $x(t), y(t), z(t) \in S$, then we know

$$(x(t) + y(t)) + z(t) = x(t) + (y(t) + z(t))$$

is satisfied.

• Neutral Element: We have that there exists the zero function $0 \in S$ such that

$$0 + x(t) = x(t).$$

• Inverses: Given an $x(t) \in S$, we have the function $-x(t) \in S$ such that

$$x(t) + (-x(t)) = 0.$$

Then we have the scalar multiplication properties

• Associativity: If we have $\alpha, \beta \in \mathbb{C}$ and $x(t) \in S$ then we have

$$\alpha(\beta x(t)) = (\alpha\beta)x(t)$$

holds.

• Distribution: Given $\alpha, \beta \in \mathbb{C}$ and $x(t) \in S$ we have

$$(\alpha + \beta)x(t) = \alpha x(t) + \beta x(t)$$

holds.

• Distribution: Given $\alpha \in \mathbb{C}$ and $x(t), y(t) \in S$, we have

$$\alpha(x(t) + y(t)) = \alpha x(t) + \alpha y(t)$$

holds.

• Unit element: We have $1 \in \mathbb{C}$ satisfies that for any $x(t) \in S$ that

$$1x(t) = x(t).$$

(b) Now, note that above we defined $\vec{0} \in S$ to be the zero function 0. That is, the function that is 0 for every value of t. Note that 0 is a solution to the equation since

$$0'' + f(t) \cdot 0' + g(t)0 = 0.$$

Then, we have $1 \in \mathbb{C}$ that satisfies the necessary property too. In this case, 1 is literally the unit element we care about.

Remark 1. Not all vector spaces will have such obvious neutral elements, $\vec{0}$. Likewise, not all fields will have an obvious unit element 1. This is why we must be a bit careful at times.

(c) Now, the biggest requirement for a vector space is that linear combinations of vectors actually produce another vector. This is quite obvious in the plane \mathbb{R}^2 for example, but here, it is not necessarily obvious.

Now, we take $\alpha, \beta \in \mathbb{C}$ and $x(t), y(t) \in S$ and we consider the linear combination

$$z(t) = \alpha x(t) + \beta y(t).$$

We then wish to show that this linear combination (or superposition) is a solution as well. So we plug in z(t) into our equation as follows

$$z''(t) + f(t)z'(t) + g(t)z(t) = (\alpha x''(t) + \beta y''(t)) + f(t)(\alpha x'(t) + \beta y'(t)) + g(t)(\alpha x(t) + \beta y(t))$$

= $\alpha [x''(t) + f(t)x'(t) + g(t)x(t)] + \beta [y''(t) + f(t)y'(t) + g(t)y(t)]$
= 0,

since we knew that x(t) and y(t) themselves are solutions. Thus, z(t) is as well and now we have that S is a vector space.

Problem 2. Consider the following vectors in the real plane \mathbb{R}^2 . We let

$$\vec{u} = 1\hat{x} + 2\hat{y}$$
 and $\vec{v} = -3\hat{x} + 3\hat{y}$.

(a) Draw both \vec{u} and \vec{v} in the plane and label the origin.

- (b) Draw the vector $\vec{w} = \vec{u} + \vec{v}$ in the plane.
- (c) Find the area of the parallelogram generated by \vec{u} and \vec{v} .

Solution 2. (a) See the plane below.

(b) Both (a) and (b) are in the plane here:

(c) One could compute the area of the parallelogram generated by \vec{u} and \vec{v} in many ways. First, let us see what this looks like:

In order to compute this area, we can use the cross product by thinking of these vectors as being in 3-dimensional space by

$$\vec{\boldsymbol{u}} = 1\hat{\boldsymbol{x}} + 2\hat{\boldsymbol{y}} + 0\hat{\boldsymbol{z}}$$
 and $\vec{\boldsymbol{v}} = -3\hat{\boldsymbol{x}} + 3\hat{\boldsymbol{y}} + 0\hat{\boldsymbol{z}}.$

Then the cross product of these two vectors must only have a z-component since these two vectors lie in the xy-plane. Thus, we can compute

$$\vec{\boldsymbol{u}} \times \vec{\boldsymbol{v}} = (1 \cdot 3 - (-3) \cdot 2)\hat{\boldsymbol{z}} = 9\hat{\boldsymbol{z}}.$$

Hence, the area is $\|\vec{\boldsymbol{u}} \times \vec{\boldsymbol{v}}\| = \|9\hat{\boldsymbol{z}}\| = 9.$

Problem 3.

(a) We can reflect a vector in the plane by first reflecting basis vectors. Let $R: \mathbb{R}^2 \to \mathbb{R}^2$ be a function be defined by

$$R(\hat{\boldsymbol{x}}) = -\hat{\boldsymbol{x}}$$
 and $R(\hat{\boldsymbol{y}}) = \hat{\boldsymbol{y}}.$

Let $\vec{\boldsymbol{v}} = \alpha_1 \hat{\boldsymbol{x}} + \alpha_2 \hat{\boldsymbol{y}}$ and define

$$R(\vec{\boldsymbol{v}}) = \alpha_1 R(\hat{\boldsymbol{x}}) + \alpha_2 R(\hat{\boldsymbol{y}}).$$

When this is the case, we call the function T linear. Show that R reflects the vector $\vec{u} = 1\hat{x} + 2\hat{y}$ about the y-axis and draw a picture.

(b) We can rotate a vector in the plane by first rotating the basis vectors \hat{x} and \hat{y} . Define a linear function $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by

$$T(\hat{\boldsymbol{x}}) = \hat{\boldsymbol{y}}$$
 and $T(\hat{\boldsymbol{y}}) = -\hat{\boldsymbol{x}}.$

Show that T rotates \vec{u} by $\pi/2$ in the counterclockwise direction and draw a picture.

Solution 3.

(a) So, we can take the vector \vec{u} and then we have

$$R(\vec{\boldsymbol{u}}) = 1R(\hat{\boldsymbol{x}}) + 2R(\hat{\boldsymbol{y}}) = -1\hat{\boldsymbol{x}} + 2\hat{\boldsymbol{y}}.$$

So we can plot both \vec{u} and $R(\vec{u})$ in the plane:

We can see that this is definitely the reflection of the vector \vec{u} across the y-axis.

(b) We can now do this for the function T to get

$$T(\vec{\boldsymbol{u}}) = 1T(\hat{\boldsymbol{x}}) + 2T(\hat{\boldsymbol{y}}) = 1\hat{\boldsymbol{y}} - 2\hat{\boldsymbol{x}}.$$

Then we can plot both \vec{u} and $T(\vec{u})$ in the plane:

We can see that this is definitely the rotation of the vector \vec{u} an angle of $\pi/2$ in the counter-clockwise direction.

Problem 4. Consider the following vectors in space \mathbb{R}^3

$$\vec{u} = 1\hat{x} + 2\hat{y} + 3\hat{z}$$
 and $\vec{v} = -2\hat{x} + 1\hat{y} - 2\hat{z}$

- (a) Compute the dot product $\vec{u} \cdot \vec{v}$.
- (b) Compute the cross product $\vec{u} \times \vec{v}$.
- (c) Compute the lengths $\|\vec{u}\|$ and $\|\vec{v}\|$ using the dot product.
- (d) Compute the angle between vectors \vec{u} and \vec{v} .
- (e) Compute the projection of \vec{u} in the direction of \vec{v} .

Solution 4.

(a) We have that

$$\vec{u} \cdot \vec{v} = 1 \cdot (-2) + 2 \cdot 1 + 3 \cdot (-3)$$

= -6.

(b) Here, feel free to use a formula for a cross product instead of writing it all out. We will find that

$$\vec{\boldsymbol{u}} \times \vec{\boldsymbol{v}} = -7\hat{\boldsymbol{x}} - 4\hat{\boldsymbol{y}} + 5\hat{\boldsymbol{z}}.$$

(c) We compute the lengths using the dot product by

$$\|\vec{u}\| = \sqrt{\vec{u} \cdot \vec{u}} = \sqrt{1^2 + 2^2 + 3^2} = \sqrt{14}.$$

Likewise

$$\|\vec{v}\| = \sqrt{\vec{v} \cdot \vec{v}} = \sqrt{(-2)^2 + 1^2(-2)^2} = \sqrt{9} = 3$$

(d) We can find the angle θ between \vec{u} and \vec{v} with the information we already have. Indeed, recall the formula

$$\vec{u} \cdot \vec{v} = \|\vec{u}\| \|\vec{v}\| \cos \theta.$$

In the previous parts, we have computed $\vec{u} \cdot \vec{v} = -6$, $\|\vec{u}\| = \sqrt{14}$, and $\|\vec{v}\| = 3$ so we now just have the following

$$-6 = 3\sqrt{14}\cos\theta.$$

Thus,

$$\theta = \arccos\left(\frac{-6}{3\sqrt{14}}\right) \approx 2.1347$$
 radians.

One could also use the fact that $\|\vec{\boldsymbol{u}} \times \vec{\boldsymbol{v}}\| = \|\vec{\boldsymbol{u}}\| \|\vec{\boldsymbol{v}}\| \sin \theta$ since we had already compute the cross product earlier.

(e) The projection of \vec{u} in the direction of \vec{v} is simply asking for how much of the vector \vec{u} is in the direction of \vec{v} . One can arrive at this purely through trigonometry, but we have the dot product at our disposal. The normalized vector \hat{v} points in the direction of \vec{v} with length 1 and

$$\hat{\boldsymbol{v}} = \frac{1}{\|\vec{\boldsymbol{v}}\|}\vec{\boldsymbol{v}} = \frac{1}{3}\vec{\boldsymbol{v}}.$$

Then, the projection can be computed by

$$\vec{\boldsymbol{u}}\cdot\hat{\boldsymbol{v}}=\frac{1}{3}\vec{\boldsymbol{u}}\cdot\vec{\boldsymbol{v}}=-2.$$

One should attempt to recover this notion by doing some trigonometry.