
MATH 271, Homework 7, Solutions
Due November 1st

Problem 1. Let S be the set of general solutions x(t) to the following homogeneous linear
differential equation

x′′ + f(t)x′ + g(t)x = 0.

Show that this set S is a vector space over the complex numbers by doing the following. Let
x(t), y(t), z(t) ∈ S be solutions to the above equation and let α, β ∈ C be complex scalars.

(a) Write down the eight requirements for S to be a vector space.

(b) Identify the ~0 ∈ S and 1 ∈ C.

(c) Show that αx(t) + βy(t) ∈ S. That is, show that a superposition of solutions is also a
solution. Hint: We have shown this before.

Solution 1. (a) We can remember these requirements via the acronym CANI ADDU. So
we have for the vector addition properties

� Commutivity: If we have two solutions x(t) and y(t) in the set S, then we know

x(t) + y(t) = y(t) + x(t)

is satisfied.

� Associativity: If we have three solutions x(t), y(t), z(t) ∈ S, then we know

(x(t) + y(t)) + z(t) = x(t) + (y(t) + z(t))

is satisfied.

� Neutral Element: We have that there exists the zero function 0 ∈ S such that

0 + x(t) = x(t).

� Inverses: Given an x(t) ∈ S, we have the function −x(t) ∈ S such that

x(t) + (−x(t)) = 0.

Then we have the scalar multiplication properties

� Associativity: If we have α, β ∈ C and x(t) ∈ S then we have

α(βx(t)) = (αβ)x(t)

holds.
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� Distribution: Given α, β ∈ C and x(t) ∈ S we have

(α + β)x(t) = αx(t) + βx(t)

holds.

� Distribution: Given α ∈ C and x(t), y(t) ∈ S, we have

α(x(t) + y(t)) = αx(t) + αy(t)

holds.

� Unit element: We have 1 ∈ C satisfies that for any x(t) ∈ S that

1x(t) = x(t).

(b) Now, note that above we defined ~0 ∈ S to be the zero function 0. That is, the function
that is 0 for every value of t. Note that 0 is a solution to the equation since

0′′ + f(t) · 0′ + g(t)0 = 0.

Then, we have 1 ∈ C that satisfies the necessary property too. In this case, 1 is literally
the unit element we care about.

Remark 1. Not all vector spaces will have such obvious neutral elements, ~0. Likewise,
not all fields will have an obvious unit element 1. This is why we must be a bit careful
at times.

(c) Now, the biggest requirement for a vector space is that linear combinations of vectors
actually produce another vector. This is quite obvious in the plane R2 for example, but
here, it is not necessarily obvious.

Now, we take α, β ∈ C and x(t), y(t) ∈ S and we consider the linear combination

z(t) = αx(t) + βy(t).

We then wish to show that this linear combination (or superposition) is a solution as
well. So we plug in z(t) into our equation as follows

z′′(t) + f(t)z′(t) + g(t)z(t) = (αx′′(t) + βy′′(t)) + f(t)(αx′(t) + βy′(t)) + g(t)(αx(t) + βy(t))

= α [x′′(t) + f(t)x′(t) + g(t)x(t)] + β [y′′(t) + f(t)y′(t) + g(t)y(t)]

= 0,

since we knew that x(t) and y(t) themselves are solutions. Thus, z(t) is as well and now
we have that S is a vector space.
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Problem 2. Consider the following vectors in the real plane R2. We let

~u = 1x̂ + 2ŷ and ~v = −3x̂ + 3ŷ.

(a) Draw both ~u and ~v in the plane and label the origin.

(b) Draw the vector ~w = ~u + ~v in the plane.

(c) Find the area of the parallelogram generated by ~u and ~v.

Solution 2. (a) See the plane below.

(b) Both (a) and (b) are in the plane here:

x

y

~u

~v

~u + ~v

(c) One could compute the area of the parallelogram generated by ~u and ~v in many ways.
First, let us see what this looks like:
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x

y

~u

~v

In order to compute this area, we can use the cross product by thinking of these vectors
as being in 3-dimensional space by

~u = 1x̂ + 2ŷ + 0ẑ and ~v = −3x̂ + 3ŷ + 0ẑ.

Then the cross product of these two vectors must only have a z-component since these
two vectors lie in the xy−plane. Thus, we can compute

~u× ~v = (1 · 3− (−3) · 2)ẑ = 9ẑ.

Hence, the area is ‖~u× ~v‖ = ‖9ẑ‖ = 9.
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Problem 3.

(a) We can reflect a vector in the plane by first reflecting basis vectors. Let R : R2 → R2 be
a function be defined by

R(x̂) = −x̂ and R(ŷ) = ŷ.

Let ~v = α1x̂ + α2ŷ and define

R(~v) = α1R(x̂) + α2R(ŷ).

When this is the case, we call the function T linear.
Show that R reflects the vector ~u = 1x̂ + 2ŷ about the y-axis and draw a picture.

(b) We can rotate a vector in the plane by first rotating the basis vectors x̂ and ŷ. Define
a linear function T : R2 → R2 defined by

T (x̂) = ŷ and T (ŷ) = −x̂.

Show that T rotates ~u by π/2 in the counterclockwise direction and draw a picture.

Solution 3.

(a) So, we can take the vector ~u and then we have

R(~u) = 1R(x̂) + 2R(ŷ) = −1x̂ + 2ŷ.

So we can plot both ~u and R(~u) in the plane:

x

y

~uR(~u)

We can see that this is definitely the reflection of the vector ~u across the y-axis.

(b) We can now do this for the function T to get

T (~u) = 1T (x̂) + 2T (ŷ) = 1ŷ − 2x̂.

Then we can plot both ~u and T (~u) in the plane:
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x

y

~u

T (~u)

We can see that this is definitely the rotation of the vector ~u an angle of π/2 in the
counter-clockwise direction.
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Problem 4. Consider the following vectors in space R3

~u = 1x̂ + 2ŷ + 3ẑ and ~v = −2x̂ + 1ŷ − 2ẑ.

(a) Compute the dot product ~u · ~v.

(b) Compute the cross product ~u× ~v.

(c) Compute the lengths ‖~u‖ and ‖~v‖ using the dot product.

(d) Compute the angle between vectors ~u and ~v.

(e) Compute the projection of ~u in the direction of ~v.

Solution 4.

(a) We have that

~u · ~v = 1 · (−2) + 2 · 1 + 3 · (−3)

= −6.

(b) Here, feel free to use a formula for a cross product instead of writing it all out. We will
find that

~u× ~v = −7x̂− 4ŷ + 5ẑ.

(c) We compute the lengths using the dot product by

‖~u‖ =
√
~u · ~u =

√
12 + 22 + 32 =

√
14.

Likewise
‖~v‖ =

√
~v · ~v =

√
(−2)2 + 12(−2)2 =

√
9 = 3.

(d) We can find the angle θ between ~u and ~v with the information we already have. Indeed,
recall the formula

~u · ~v = ‖~u‖‖~v‖ cos θ.

In the previous parts, we have computed ~u · ~v = −6, ‖~u‖ =
√

14, and ‖~v‖ = 3 so we
now just have the following

−6 = 3
√

14 cos θ.

Thus,

θ = arccos

(
−6

3
√

14

)
≈ 2.1347 radians.

One could also use the fact that ‖~u× ~v‖ = ‖~u‖‖~v‖ sin θ since we had already compute
the cross product earlier.
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(e) The projection of ~u in the direction of ~v is simply asking for how much of the vector
~u is in the direction of ~v. One can arrive at this purely through trigonometry, but we
have the dot product at our disposal. The normalized vector v̂ points in the direction
of ~v with length 1 and

v̂ =
1

‖~v‖
~v =

1

3
~v.

Then, the projection can be computed by

~u · v̂ =
1

3
~u · ~v = −2.

One should attempt to recover this notion by doing some trigonometry.
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