MATH 271, HOMEWORK 5, Solutions
DuUE OCTOBER 11™

Problem 1. p-series are actually related to a very important function called the Riemann
zeta function. This function is involved in a million dollar math problem! If you’re interested
in other million dollar problems, look up the Clay Institute Millennium Problems. The
Riemann zeta function is given by
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(a) Use the integral test to show that the p-series
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converges. Look up what this series converges to and write it down. This is {(2).

(b) Use the comparison test to show that the p-series
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converges. This converges as well to ((3). Look up what this approximate value is.
Solution 1.

(a) Note that a, = f(n) = -5. Hence we can make a comparison to the integral
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where we start at x = 1 since our sum begins there as well. We evaluate the integral
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So since the integral is finite the series converges. Warning: the integral does not tell us
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what the series converges to! The series in fact converges to ((2) = .

(b) Note that for N > 2 we have that b,, = # < # = a,. Thus, since we have this inequality
and we found 7 | a,, converges, we also have that >~ b, converges as well. Warning:

again, this comparison test does not tell us what the series converges to. If we look it up
we find that (3) ~ 1.20206.



Problem 2. Find the radius of convergence for the following power series
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Solution 2.

(a) To find the radius of convergence we must look at the ratio of terms in the sequence as
n — oo. Specifically, we take
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Now, in order for this series to converge, the ratio test above must give us a limit L < 1,
and hence we must have that |z| < 1. So the radius of convergence is 1.

(b) Similarly, we have
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Hence the limit is 0 < 1 and so for any value of x this series converges and it follows
that the radius of convergence is infinite.



Problem 3. Consider the two series
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(a) Show that cos(—x) = cos(z).
(b) Show that sin(—x) = —sin(z).

(c) To take a derivative of a power series f(x Z a,z" we can do the following:
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Compute % sin(z) and % cos(z) and show that they are equal to what you already know.
Warning: be careful with the powers of x in the case with sin and cos!

Solution 3.

(a) We take
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= cos(x)

Fundamentally, this is because all powers of x in the terms in the series are even. This
is why we call cos an even function!

(b) Similarly, we take
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Again, this is happening due to the fact that all powers of = in the terms for the series
are odd. This is why we call sin an odd function.



(¢) Consider first - sin(z). We take
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These are the first few terms of the cos(z) series. Notice if we take
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So we have p
. sin(x) = cos(z).

When we consider % of cos(x) we have to be a bit more careful. Let’s see what happens.

We take
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which look like the first terms in the series for — sin(x). However, let’s take a derivative

of the term
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Now if we were to have this in our series we find
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since the first term on the right has an ! in it! When we write out the terms of the
series and differentiate them, we don’t make this mistake. We just have to be careful.
What we really should have is

d o (_1)nx2n B o (_1)nx2n—1
%Z (2n)! =2 (2n — 1)!
n=0 n=1
n+1 2n+1

B Z 2n +1
= — Sm(:zc).

Notice above I reindexed the series. This is not something I'm going to worry too much
about you doing.



Remark 1. Again, some of my work here is beyond what I was expecting. If you would have
taken the derivatives of the first few terms and showed they are equal, you can extrapolate
beyond that and assume it will work for the rest of the terms. Just be careful with this!



Problem 4. Consider the function
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(a) Compute the Maclaurin series for the function.
(b) Find the integral [ ;- using the Maclaurin series for f(z) found in (a).
(c) Write down the Maclaurin series for In(1 — z) and compare to your answer in (b).

Solution 4.

(a) To find the Maclaurin series (i.e., the Taylor series centered at a = 0), we must compute
f™(0) as we desire to find
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The derivatives are
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f(z) = @le - F(0) = n!

Hence, if we plug this into the formula for the Maclaurin series we have
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(b) We can integrate this series term by term to find the desired antiderivative. So we have
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(c) We can find the Maclaurin series for In(1 —z) in the same way as above. However, notice
that % In(l —z) = ﬁ, and thus up to determining the constant C', we have that
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Problem 5.
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(a) Compute the Taylor series centered at a = 0 for f(z) =e 7.

(b) Use the Taylor series for e* and modify it to find a power series for f(z). Is this the
same as the series in (a)?

(c) Plot the original function f(z) compared to the first, second, third, and fourth term
approximation for the series on the same graph.

Solution 5. (a) We find the Taylor series centered at a = 0 by computing f™(0). The
derivatives are

fO@) = e — FO0) =1
FO@) = 2% — F0(0) =0
fO(@) = (2>~ e — F2(0) = -1
[O(2) = a(a® — 3)e ¥ — F9(0) =0
FO@) = (@t — 622 +3)e % — FD(0) = 3.

This gives us the first five terms of the Taylor series for f(x) so that we have
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(b) The easier way is to modify an already known power series like . We have
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If we replace x — —%- then we have
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(c) Below is a graph showing the three different functions.
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Figure 1: Red: f(z); Green: Four terms from Taylor series; Purple: Four terms from modified
Taylor series.

Remark 2. The reason why the graphs are different is because the modified series skips
the zero terms that show up in the Taylor series computation. So when we plot four
terms in the modified series, it is equal to plotting the first eight terms of the actual
Taylor series.



Problem 6. How can we approximate a (possibly complicated) function by using a power
series? Why is this useful (specifically for computation on a computer)?

Solution 6. We can often times approximate a function about a point x = a using a
truncated Taylor series centered about a. What I mean is that we will have a function f(x)
which (inside its interval of convergence) will be equal to
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This proves to be very useful as we can take finite truncations of the complete power series
above. Specifically, we have that
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It turns out that this is a reasonable approximation for f as long as we don’t look too far away
from x = a. Also, computers really only have the ability to add. Of course, multiplication is
sequential adding, division can be done through subtraction and multiplication, and powers
come from sequential multiplication. The point is, computers work with polynomials (or
rational functions) and this gives us a way to realize a complicated non-polynomial function
as (approximately) a polynomial function.



