MATH 271, HOMEWORK 4 DUE OCTOBER 2TH

Problem 1. Consider the following sequences,

$$a_n = \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \dots, \frac{1}{2^n}, \dots,$$

and

$$b_n = 1, \frac{1}{2}, \frac{1}{6}, \frac{1}{24}, \dots, \frac{1}{n!}, \dots$$

- (a) For what values of N do we need for $a_N < 0.01$ and $b_N < 0.01$? Note, these will be different values for N.
- (b) Compute $\lim_{n \to \infty} a_n$.
- (c) Compute $\lim_{n \to \infty} b_n$.
- (d) Which sequence converges more quickly to its limit? (*Hint: consider a ratio of the terms of the sequences and take a limit. Part (a) should help you think about this.*)

Problem 2. With the same a_n from Problem 1, consider the series

$$A = \sum_{n=1}^{\infty} a_n.$$

- (a) Write down the N^{th} partial sum A_N for this series.
- (b) Does this sequence of partial sums converge? If so, to what?
- (c) Note that this is an *geometric series* with a = 1 and $r = \frac{1}{2}$. However, we start from n = 1 instead of n = 0. Show the value that this series converges to using the formula for a geometric series.

Problem 3. With the same b_n from Problem 1, consider the series

$$B = \sum_{n=0}^{\infty} b_n.$$

- (a) Use the ratio test to show that this series converges.
- (b) Approximate the value the series converges to by considering larger and larger partial sums.
- (c) What number does this series converge to?

Problem 4. Consider the *p*-series:

$$\sum_{n=1}^{\infty} \frac{1}{n^p}.$$

- (a) For p = 1, show that the ratio test is inconclusive.
- (b) For p = 2, show that the ratio test is again inconclusive.
- (c) Look up the sum of the series for p = 1 and p = 2. Notice how the ratio test is not perfect!