
MATH 271, Homework 3, Solutions

Problem 1. Write down the equations for each of the reactants and products for the fol-
lowing reactions.

(a) A+ 3B + C
k−→ 2D + 2E.

(b) A
k1−→ B + C

k2−→ D.

Solution 1. (a) We have the equations

[A]′ = −k[A][B]3[C]

[B]′ = −3k[A][B]3[C]

[C]′ = −k[A][B]3[C]

[D]′ = 2k[A][B]3[C]

[E]′ = 2k[A][B]3[C].

(b) The equations are

[A]′ = −k1[A]

[B]′ = k1[A]− k2[B][C]

[C]′ = k1[A]− k2[B][C]

[D]′ = k2[B][C].
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Problem 2. Consider the following reaction

A
k1−→ B

k2−→ C.

For the following parts, use the link: https://www.desmos.com/calculator/srrpeadlou.

(a) Compare and contrast the reactions that take place given the three different scenarios
for initial conditions. Explain why what the graph displays makes sense and include
your graphs.

� [A]0 = 1, [B]0 = 0, and [C]0 = 0.

� [A]0 = 0, [B]0 = 1, and [C]0 = 0.

� [A]0 = 0, [B]0 = 0, and [C]0 = 1.

(b) For the initial conditions [A]0 = 1, [B]0 = 0, and [C]0 = 0, explain what happens when
you let

� k1 = 0 and k2 = 1,

� k1 = 1 and k2 = 0.

Include plots for these cases as well.

(c) Consider the initial conditions [A]0 = 1, [B]0 = 0, and [C]0 = 0 and rate constants
k1 = 1 and k2 = 2. Then, choose initial conditions of your own and compare your plots
with the other initial conditions. Why do yours behave the way they do? Include your
plots.

Solution 2. (a) Here are the graphs for the given initial conditions.

(a) Curves for [A]0 = 1,
[B]0 = 0, and [C]0 = 0.

(b) Curves for [A]0 = 0,
[B]0 = 1, and [C]0 = 0.

(c) Curves for [A]0 = 0,
[B]0 = 0, and [C]0 = 1.

Let’s now think about these graphs.
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� The first sees exponential decay of species A and initially a quick growth of species
B. But, as species B reacts and creates species C, we start to see a plateau and
then decline in the concentration of species B. Ultimately, the concentration of
species C seems to grow consistently. In the beginning, the concentration of species
C increases more slowly since there is less of B to react, and it grows more slowly
towards the end of the reaction for a similar reason.

� Now, species A has no role in the reaction. We simply see exponential decay of
species B as it produces C.

� There is no reaction taking place since we have removed A and B from the system
entirely. All we have left is the stable species C.

(b) Here are the graphs for the different k values.

(a) Curves for k1 = 0 and
k2 = 1 with initial concentra-
tions [A]0 = 1, [B]0 = 0, and
[C]0 = 0.

(b) Curves for k1 = 1 and
k2 = 0 with initial concentra-
tions [A]0 = 1, [B]0 = 0, and
[C]0 = 0.

Let’s now think about these graphs.

� Here, if k1 = 0, then the first reaction never takes place. So, none of species A can
react to form species B. Since there is no initial concentration for B or C, there are
never any of these products produced. We simply see [A] remain constant. This is
similar to what we see in the third case in the previous part of this problem.

� By taking k2 = 0 we have essentially removed the second reaction. Now, A converts
to B and B never converts to C. Thus, we see exponential decay of A which
produces B. This is similar to what we see in the second case in the previous part
of this problem.

(c) Plots for (c) below.
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(a) Curves for k1 = 1 and
k2 = 2 with initial concentra-
tions [A]0 = 1, [B]0 = 0, and
[C]0 = 0.

(b) Curves for k1 = 1 and
k2 = 0 with initial concentra-
tions [A]0 = 0.5, [B]0 = 0.3,
and [C]0 = 0.1.

I chose these other initial conditions because we never see an increase in the amount of
species B. To me, this is a bit interesting. The rate of reaction k2 being larger means
that we do not always see a build up of species B.
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Problem 3. Consider the second order chemical reaction given by

A+B
k−→ Products.

(a) Write a system of differential equations to describe the concentration of the reactants A
and B (this means write one for each).

(b) The concentrations of A and B can be related to each other in the following way: Let
A = A0 − x and B = B0 − x. Here, we think of x as the amount of each chemical that
has reacted, and note that it depends on time t. Use this change of variables to rewrite
the differential equation for chemical A in terms of x and t.

(c) Solve the differential equation in (b) with the initial condition x(0) = 0.You will need to
use partial fraction decomposition to evaluate the integral.

Solution 3.

(a) The system of equations we will get is

d[A]

dt
= −k[A][B]

d[B]

dt
= −k[A][B].

(b) Now, let [A] = [A]0− x and [B] = [A]0− x and, since [A]0 and [B]0 are constant, we get
the equation for [A],

−dx
dt

= k([A]0 − x)([B]0 − x).

It turns out [B] has the same equation (which you should double check yourself).

(c) This is a separable equation, so we can find the solution by

−dx
dt

= k([A]0 − x)([B]0 − x)∫
dx

([A]0 − x)([B]0 − x)
= −k

∫
dt.

Here, we can use the partial fraction decomposition to get

1

[A]0 − [B]0
ln

(
x− [A]0
x− [B]0

)
= −kt+ C.

Then we can find
x− [A]0
x− [B]0

= e−kt+C

With x(0) = 0 we have
−[A]0
−[B]0

= e−kteC
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and so eC = [A]0
[B]0

. We can rewrite this in terms of [A] and [B] as

[A]

[B]
=

[A]0
[B]0

e−kt.

This is as simplified as I would take the expression. What we can see here is that the
ratio of [A] to [B] will change exponentially over time.
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Problem 4. If x1(t) and x2(t) are solutions to the differential equation

x′′ + bx′ + cx = 0

is x = x1 + x2 + k for a constant k always a solution? Is the function y = tx1 a solution?

Solution 4. x and y are not solutions. Let’s see why. We note that x1 and x2 are solutions
and thus

x′′i + bx′i + cxi = 0 for i = 1, 2.

Now, we check if x is a solution by plugging into the left hand side

x′′ + bx′ + cx = (x1 + x2 + k)′′ + b(x1 + x2 + k)′ + c(x1 + x2 + k)

= x′′1 + bx′1 + cx1︸ ︷︷ ︸
=0

+x′′2 + bx′2 + cx2︸ ︷︷ ︸
=0

+ck

= ck 6= 0.

So this x is not a solution.
Similarly, we take y = tx1 and plug it into the left hand side and find

y′′ + by′ + cy = (tx1)
′′ + b(tx1)

′ + c(tx1)

= tx′′1 + 2x′1 + b(tx′1 + x1) + c(tx1)

= t (x′′1 + bx′1 + cx1)︸ ︷︷ ︸
=0

+2x′1 + bx1

= 2x′1 + bx1,

which is not in general a solution unless x1 = 0.
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Problem 5. Consider the following initial value problem:

x′′ + 4x′ + 3x = 0

with initial data x(0) = 1, x′(0) = 0.

(a) Find the solution.

(b) Sketch a plot of the solution.

(c) Explain in words what is happening to the solution as time goes on. What happens as
t→∞?

Solution 5.

(a) We can solve this homogeneous second order linear equation with constant coefficients
by finding roots to its characteristic polynomial. In this case, that amounts to

λ2 + 4λ+ 3 = 0

⇐⇒ (λ+ 3)(λ+ 1) = 0,

so the roots are λ1 = −1 and λ2 = −3. Thus our general solution is

x(t) = C1e
λ1t + C2e

λ2t = C1e
−t + C2e

−3t.

Then we use the initial conditions to find a particular solution. Namely,

1 = x(0) = C1e
−0 + C2e

−3·0 = C1 + C2

0 = x′(0) = −C1e
−0 − 3C2e

−3·0 = −C1 − 3C2.

Using the second equation we get C1 = −3C2. We can plug this into the first equation
to get

1 = −3C2 + C2 = −2C2

meaning that C2 = −1
2
. Thus C2 = 3

2
. Hence, our particular solution for this IVP is

x(t) =
3

2
e−t − 1

2
e−3t.

(b) Here is a plot of the particular solution from time t = 0 to time t = 10.
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(c) The solution decays exponentially over time. As t→∞ our solution approaches zero.
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Problem 6. Write down a homogeneous second-order linear differential equation where the
system displays a decaying oscillation.

Solution 6. Since our solution should oscillate and decay, we need some form of a “spring”
and some form of damping. These terms show up respectively as b and c in the equation

x′′ + bx′ + cx = 0.

Now, also note that (aside from one special case of two of the same real roots), our general
solution has the form

x(t) = C1e
λ1t + C2e

λ2t

where λ1 and λ2 are roots to the characteristic polynomial

λ2 + bλ+ c = 0.

Now, the roots for the characteristic polynomial are

λ =
−b±

√
b2 − 4c

2
.

� To have oscillation, our roots must have an imaginary part and thus

b2 − 4c < 0.

In other words, b2 < 4c.

� To have a decaying solution, the real part of the roots must be negative. The real part
of the roots will be −b

2
and thus we need

−b
2
< 0.

Now, I’ll choose b = 1 and c = 1 which satisfy both of these requirements. We then have

x′′ + x′ + x = 0

as our equation.
Note, we can also find the solution as the roots are then

λ =
−1±

√
1− 4

2
=
−1

2
±
√

3

2
.

Plugging this into the form for the general solution and we get

x(t) = e−
1
2
t

(
C1 sin

(√
3

2

)
+ cos

(√
3

2

))
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Problem 7. Consider the following differential equation:

x′′ + 2x′ + x = 3e−t + 2t.

(a) Find the homogeneous solution xH(t).

(b) Find the particular integral xP (t).

(c) Find the specific solution corresponding to the initial data x(0) = 0, x′(0) = 0.

Solution 7.

(a) The roots to characteristic polynomial satisfy

λ2 + 2λ+ 1 = 0

which can be found by factoring
(λ+ 1)2 = 0,

which gives us that λ = −1 is the only root. Thus, this is the special case where our
general solution looks slightly different. We’ll have

xh(t) = C1e
−t + C2te

−t.

(b) The right hand side has a e−t term which is already present in our xh. In fact, this
means we have to take kt2e−t as a guess for this part of xp. Then, we also have a 2t
term, so our xp should be

xp = kt2e−t + a0 + a1t.

Now we have to find the undetermined coefficients by plugging in and solving

x′′p + 2x′p + xp = 3e−t + 2t

2ke−t − 4kte−t + kt2e−t + 2(2kte−t − kt2e−t + a1) + kt2e−ta1t+ a0 = 3e−t + 2t

which gives us that k = 3
2
, a1 = 2, and a0 = −4. So

xp(t) =
3

2
t2e−t + 2t− 4.

(c) Now, we take it that our solution is of the form

x(t) = xh + xp = C1e
−t + C2te

−t +
3

2
t2e−t + 2t− 4.

If we take
0 = x(0) = C1 − 4

then C1 = 4, and
0 = x′(0) = −4 + C2 + 2

so C2 = 2. Thus, our specific solution is

x(t) = (4 + 2t)e−t +
3

2
t2e−t + 2t− 4.
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