$\begin{array}{c} \mbox{MATH 271, Exam 3} \\ \mbox{Take Home Portion} \\ \mbox{Due December 4}^{\mbox{th}} \mbox{ at the start of class} \end{array}$

Name _____

Instructions You are allowed a textbook, homework, notes, worksheets, material on our Canvas page, but no other online resources (including calculators or WolframAlpha). for this portion of the exam. **Do not discuss any problem any other person.** All of your solutions should be easily identifiable and supporting work must be shown. Ambiguous or illegible answers will not be counted as correct. **Print out this sheet and staple your solutions to it. Use a new page for each problem.**

Problem 1 ____/15

Problem 2 ____/10

Note, these problems span two pages.

Problem 1. Consider the vectors $\vec{u} = \hat{x} + \hat{y}$, $\vec{v} = \hat{x} + \hat{z}$, and $\vec{w} = \hat{y} + \hat{z}$.

(a) (2 pts.) Write the matrix [A] whose columns are \vec{u} , \vec{v} , and \vec{w} and compute the determinant. Specifically, let

$$[A] = \begin{pmatrix} | & | & | \\ \vec{\boldsymbol{u}} & \vec{\boldsymbol{v}} & \vec{\boldsymbol{w}} \\ | & | & | \end{pmatrix}.$$

then find det([A]).

- (b) (1 pt.) What is the volume of the parallelepiped generated by the vectors \vec{u} , \vec{v} , and \vec{w} ?
- (c) (2 pts.) Are the vectors \vec{u} , \vec{v} , and \vec{w} linearly independent? Explain.
- (d) (2 pts.) Explain geometrically why any inhomogeneous equation

$$[A]\vec{x} = \vec{y}$$

(where $\vec{y} \neq \vec{0}$) has a unique solution. *Hint: your answer from* (c) may help you.

- (e) (2 pts.) Without computing the eigenvalues, argue why [A] cannot have an eigenvalue of zero.
- (f) (2 pts.) Is [A] a symmetric matrix? Explain.
- (g) (2 pts.) Without computing the eigenvalues, argue why all the eigenvalues must be real.
- (h) (2 pts.) Show that det([A] [I]) = 0 and argue why [A] must have at least one eigenvalue that is equal to 1.

Problem 2. Spin is an observable quantum phenomenon which describes intrinsic angular momentum of particles. For example, electrons and positrons are spin-1/2 particles whereas photons are spin-1 particles. An example of a massive spin-1 particle is *triplet oxygen* in its ground state (which you can read more about here: https://en.wikipedia.org/wiki/Triplet_oxygen). The following matrix

$$[S]_y = \frac{i\hbar}{\sqrt{2}} \begin{pmatrix} 0 & -1 & 0\\ 1 & 0 & -1\\ 0 & 1 & 0 \end{pmatrix},$$

is Hermitian and it describes the measurement of spin aligned along the y-axis of a Stern-Gerlach apparatus.

If we pass a spin-1 particle through the Stern-Gerlach apparatus then the possible observed states are the eigenvectors of $[S]_y$ and the angular momentum aligned with the *y*-axis is given by the respective eigenvalue.

- (a) (2 pts.) Compute the eigenvalues of $[S]_y$.
- (b) (3 pts.) Compute the eigenvectors of $[S]_y$.
- (c) (3 pts.) Show that the eigenvectors are orthogonal with respect to the Hermitian inner product

$$\langle \vec{\boldsymbol{u}}, \vec{\boldsymbol{v}} \rangle \coloneqq \sum_{i=1}^{3} u_i v_i^*,$$

where * denotes the complex conjugate.

(d) (3 pts.) We can prepare a spin-1 particle in the state

$$\vec{\Psi} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1\\1\\1 \end{pmatrix}.$$

Then, we can compute the *expected value* of the spin angular momentum of the particle $\vec{\Psi}$ by computing

$$E([S]_y) \coloneqq \langle \vec{\Psi}, [S]_y \vec{\Psi} \rangle.$$

Compute this expected value.