
MATH 271, Homework 7, Solutions
Due November 1st

Problem 1. Let S be the set of general solutions x(t) to the following homogeneous linear
differential equation

x′′ + f(t)x′ + g(t)x = 0.

Show that this set S is a vector space over the complex numbers by doing the following. Let
x(t), y(t) ∈ S be solutions to the above equation and let α, β ∈ C be complex scalars.

(a) Write down the eight requirements for S to be a vector space.

(b) Identify the ~0 ∈ S and 1 ∈ C.

(c) Show that αx(t) + βy(t) ∈ S. That is, show that a superposition of solutions is also a
solution. Hint: We have shown this before.

Solution 1. (a) We can remember these requirements via the acronym CANI ADDU. So
we have for the vector addition properties

• Commutivity: If we have two solutions x(t) and y(t) in the set S, then we know

x(t) + y(t) = y(t) + x(t)

is satisfied.

• Associativity: If we have three solutions x(t), y(t), z(t) ∈ S, then we know

(x(t) + y(t)) + z(t) = x(t) + (y(t) + z(t))

is satisfied.

• Neutral Element: We have that there exists the zero function 0 ∈ S such that

0 + x(t) = x(t).

• Inverses: Given an x(t) ∈ S, we have the function −x(t) ∈ S such that

x(t) + (−x(t)) = 0.

Then we have the scalar multiplication properties

• Associativity: If we have α, β ∈ C and x(t) ∈ S then we have

α(βx(t)) = (αβ)x(t)

holds.
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• Distribution: Given α, β ∈ C and x(t) ∈ S we have

(α + β)x(t) = αx(t) + βx(t)

holds.

• Distribution: Given α ∈ C and x(t), y(t) ∈ S, we have

α(x(t) + y(t)) = αx(t) + αy(t)

holds.

• Unit element: We have 1 ∈ C satisfies that for any x(t) ∈ S that

1x(t) = x(t).

(b) Now, note that above we defined ~0 ∈ S to be the zero function 0. That is, the function
that is 0 for every value of t. Note that 0 is a solution to the equation since

0′′ + f(t) · 0′ + g(t)0 = 0.

Then, we have 1 ∈ C that satisfies the necessary property to. In this case, 1 is literally
the unit element we care about.

Remark 1. Not all vector spaces will have such obvious neutral elements, ~0, or unit
elements 1. This is why we must be a bit careful at times.

(c) Now, the biggest requirement for a vector space is that linear combinations of vectors
actually produce another vector. This is quite obvious in the plane R2 for example, but
here, it is not necessarily obvious.

Now, we take α, β ∈ C and x(t), y(t) ∈ S and we consider the linear combination

z(t) = αx(t) + βy(t).

We then wish to show that this linear combination (or superposition) is a solution as
well. So we plug in z(t) into our equation as follows

z′′(t) + f(t)z′(t) + g(t)z(t) = (αx′′(t) + βy′′(t)) + f(t)(αx′(t) + βy′(t)) + g(t)(αx(t) + βy(t))

= α [x′′(t) + f(t)x′(t) + g(t)x(t)] + β [y′′(t) + f(t)y′(t) + g(t)y(t)]

= 0,

since we knew that x(t) and y(t) themselves are solutions. Thus, z(t) is as well and now
we have that S is a vector space.
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Problem 2. Consider the following vectors in the real plane R2. We let

~u = 1x̂ + 2ŷ and ~v = −3x̂ + 3ŷ.

(a) Draw both ~u and ~v in the plane and label the origin.

(b) Draw the vector ~w = ~u + ~v in the plane.

(c) Find the area of the parallelogram generated by ~u and ~v.

Solution 2. (a) See the plane below.

(b) Both (a) and (b) are in the plane here:

x

y

~u

~v

~u + ~v

(c) One could compute the area of the parallelogram generated by ~u and ~v in many ways.
First, let us see what this looks like:
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x

y

~u

~v

In order to compute this area, we can use the cross product by thinking of these vectors
as being in 3-dimensional space by

~u = 1x̂ + 2ŷ + 0ẑ and ~v = −3x̂ + 3ŷ + 0ẑ.

Then the cross product of these two vectors must only have a z-component since these
two vectors lie in the xy−plane. Thus, we can compute

~u× ~v = (1 · 3− (−3) · 2)ẑ = 9ẑ.

Hence, the area is ‖~u× ~v‖ = ‖9ẑ‖ = 9.
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Problem 3.

(a) We can reflect a vector in the plane by first reflecting basis vectors. Let R : R2 → R2 be
a function be defined by

R(x̂) = −x̂ and R(ŷ) = ŷ.

Let ~v = α1x̂ + α2ŷ and define

R(~v) = α1R(x̂) + α2R(ŷ).

When this is the case, we call the function T linear.
Show that R reflects the vector ~u = 1x̂ + 2ŷ about the y-axis and draw a picture.

(b) We can rotate a vector in the plane by first rotating the basis vectors x̂ and ŷ. Define
a linear function T : R2 → R2 defined by

T (x̂) = ŷ and T (ŷ) = −x̂.

Show that T rotates ~u by π/2 in the counterclockwise direction and draw a picture.

Solution 3.

(a) So, we can take the vector ~u and then we have

R(~u) = 1R(x̂) + 2R(ŷ) = −1x̂ + 2ŷ.

So we can plot both ~u and R(~u) in the plane:

x

y

~uR(~u)

We can see that this is definitely the reflection of the vector ~u across the y-axis.

(b) We can now do this for the function T to get

T (~u) = 1T (x̂) + 2T (ŷ) = 1ŷ − 2x̂.

Then we can plot both ~u and T (~u) in the plane:
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x

y

~u

T (~u)

We can see that this is definitely the rotation of the vector ~u an angle of π/2 in the
counter-clockwise direction.
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Problem 4. Consider the following vectors in space R3

~u = 1x̂ + 2ŷ + 3ẑ and ~v = −2x̂ + 1ŷ − 2ẑ.

(a) Compute the dot product ~u · ~v.

(b) Compute the cross product ~u× ~v.

(c) (Experimental) Let us try this: Take

~u~v = (1x̂ + 2ŷ + 3ẑ)(−2x̂ + 1ŷ − 2ẑ).

Distribute the above multiplication.

(d) (Experimental) Now, in the above multiplication, adopt the following rules:

x̂x̂ = ŷŷ = ẑẑ = 1 x̂ŷ = −ŷx̂ x̂ẑ = −ẑx̂ ŷẑ = −ẑŷ.

Then, simplify the multiplication in part (c) to

~u~v = α + β1ŷẑ + β2ẑx̂ + β3x̂ŷ.

That is, what are α, β1, β2, and β3?

(e) (Experimental) If we perform one more step, we will notice something quite nice. Note
that the pairs of vectors above define a plane, and there is a unique vector perpendicular
to that plane. Using this fact, we can let

ŷẑ = x̂ ẑx̂ = ŷ x̂ŷ = ẑ.

In other words, we can replace the two vectors above with their cross product, (i.e.,
ŷẑ = ŷ × ẑ = x̂.) Show that with these rules

~u~v = ~u · ~v + ~u× ~v.

Solution 4.

(a) We have that

~u · ~v = 1 · (−2) + 2 · 1 + 3 · (−3)

= −6.

(b) Here, feel free to use a formula for a cross product instead of writing it all out. We will
find that

~u× ~v = −7x̂− 4ŷ + 5ẑ.

7



(c) Note, I put experimental in these following parts as they are not the traditional way of
teaching these topics. However, I think this methodogology gives a more intuitive notion
of vectors than the traditional dot and cross products.

So we have

~u~v = (1x̂ + 2ŷ + 3ẑ)(−2x̂ + 1ŷ − 2ẑ)

= −2x̂x̂ + 1x̂ŷ − 2x̂ẑ

+−4ŷx̂ + 2ŷŷ − 4ŷẑ

+−6ẑx̂ + 3ẑŷ − 6ẑẑ.

(d) Now, we can use the rules to find that we get

~u~v = (−2 + 2− 6) + (−4− 3)ŷẑ + (−6 + 2)ẑx̂ + (1 + 4)x̂ŷ

= −6− 7ŷẑ − 4ẑx̂ + 5x̂ŷ.

Hence, we have α = −6, β1 = −7, β2 = −4, β3 = 5.

Here we can imagine that there are units attached to the quantities x̂, ŷ, and ẑ. There
is a scalar quantity which contains none of these unit vectors, and there are quantities
which contain two (i.e., x̂ŷ). The quantities containing two unit vectors represent the
plane given by the two vectors.

(e) Now, we can identify a unit vector perpendicular to a plane in R3 that satisfies the right
hand rule given by the cross product. In which case, we replace the above “multivectors”
(i.e., x̂ŷ) with the unique unit vector perpendicular to the two. So we have

~u~v = −6− 7x̂− 4ŷ + 5ẑ,

which is indeed giving us that

~u~v = ~u · ~v + ~u× ~v.

Remark 2. This all falls under the mathematics of geometric algebra which is a more general
way of understanding vectors. It is rather useful, yet it is not quite mainstream. Maybe one
day it will be!
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Problem 5. Consider the same vectors ~u,~v ∈ R3 from Problem 4.

(a) Compute the lengths ‖~u‖ and ‖~v‖ using the dot product.

(b) Compute the angle between vectors ~u and ~v. Hint: Save some work and use results
from Problem 4.

(c) Compute the projection of ~u in the direction of ~v. Hint: Again, save yourself some time
and use results from Problem 4.

Solution 5.

(a) Note that we have

‖~u‖ =
√
~u · ~u

and so we have
‖~u‖ =

√
12 + 22 + 32 =

√
14.

Similarly,
‖~v‖ =

√
(−2)2 + 12 + (−2)2 =

√
9 = 3.

(b) Now, we found ~u · ~v = −6 and we have

~u · ~v = ‖~u‖‖~v‖ cos θ

as well. Hence, it follows that

θ = arccos

(
~u · ~v
‖~u‖‖~v‖

)
= arccos

(
−6√
14 · 3

)
≈ 2.1347 ≈ 122.3◦.

(c) To compute this projection of ~u onto the direction of ~v, we must first normalize ~v to
make v̂. We have

v̂ =
~v

‖~v‖
= −2

3
x̂ +

1

3
ŷ − 2

3
ẑ.

Then we can compute the projection by

(~u · v̂)v̂ =

(
(x̂ + 2ŷ + 3ẑ) ·

(
−2

3
x̂ +

1

3
ŷ − 2

3
ẑ

))
v̂

= 2v̂.

You could also just compute
~u · ~v
‖~v‖2

~v

and get the same answer.
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