MATH 271, HOMEWORK 7, Solutions Due November 1st

Problem 1. Let S be the set of general solutions x(t) to the following homogeneous linear differential equation

$$x'' + f(t)x' + g(t)x = 0.$$

Show that this set S is a vector space over the complex numbers by doing the following. Let $x(t), y(t) \in S$ be solutions to the above equation and let $\alpha, \beta \in \mathbb{C}$ be complex scalars.

- (a) Write down the eight requirements for S to be a vector space.
- (b) Identify the $\vec{\mathbf{0}} \in S$ and $1 \in \mathbb{C}$.
- (c) Show that $\alpha x(t) + \beta y(t) \in S$. That is, show that a superposition of solutions is also a solution. *Hint: We have shown this before.*
- **Solution 1.** (a) We can remember these requirements via the acronym CANI ADDU. So we have for the vector addition properties
 - Commutivity: If we have two solutions x(t) and y(t) in the set S, then we know

$$x(t) + y(t) = y(t) + x(t)$$

is satisfied.

• Associativity: If we have three solutions $x(t), y(t), z(t) \in S$, then we know

$$(x(t) + y(t)) + z(t) = x(t) + (y(t) + z(t))$$

is satisfied.

• Neutral Element: We have that there exists the zero function $0 \in S$ such that

$$0 + x(t) = x(t).$$

• Inverses: Given an $x(t) \in S$, we have the function $-x(t) \in S$ such that

$$x(t) + (-x(t)) = 0.$$

Then we have the scalar multiplication properties

• Associativity: If we have $\alpha, \beta \in \mathbb{C}$ and $x(t) \in S$ then we have

$$\alpha(\beta x(t)) = (\alpha\beta)x(t)$$

holds.

• Distribution: Given $\alpha, \beta \in \mathbb{C}$ and $x(t) \in S$ we have

$$(\alpha + \beta)x(t) = \alpha x(t) + \beta x(t)$$

holds.

• Distribution: Given $\alpha \in \mathbb{C}$ and $x(t), y(t) \in S$, we have

$$\alpha(x(t) + y(t)) = \alpha x(t) + \alpha y(t)$$

holds.

• Unit element: We have $1 \in \mathbb{C}$ satisfies that for any $x(t) \in S$ that

$$1x(t) = x(t).$$

(b) Now, note that above we defined $\vec{0} \in S$ to be the zero function 0. That is, the function that is 0 for every value of t. Note that 0 is a solution to the equation since

$$0'' + f(t) \cdot 0' + g(t)0 = 0.$$

Then, we have $1 \in \mathbb{C}$ that satisfies the necessary property to. In this case, 1 is literally the unit element we care about.

Remark 1. Not all vector spaces will have such obvious neutral elements, $\vec{0}$, or unit elements 1. This is why we must be a bit careful at times.

(c) Now, the biggest requirement for a vector space is that linear combinations of vectors actually produce another vector. This is quite obvious in the plane \mathbb{R}^2 for example, but here, it is not necessarily obvious.

Now, we take $\alpha, \beta \in \mathbb{C}$ and $x(t), y(t) \in S$ and we consider the linear combination

$$z(t) = \alpha x(t) + \beta y(t).$$

We then wish to show that this linear combination (or superposition) is a solution as well. So we plug in z(t) into our equation as follows

$$z''(t) + f(t)z'(t) + g(t)z(t) = (\alpha x''(t) + \beta y''(t)) + f(t)(\alpha x'(t) + \beta y'(t)) + g(t)(\alpha x(t) + \beta y(t))$$

= $\alpha [x''(t) + f(t)x'(t) + g(t)x(t)] + \beta [y''(t) + f(t)y'(t) + g(t)y(t)]$
= 0,

since we knew that x(t) and y(t) themselves are solutions. Thus, z(t) is as well and now we have that S is a vector space.

Problem 2. Consider the following vectors in the real plane \mathbb{R}^2 . We let

$$\vec{u} = 1\hat{x} + 2\hat{y}$$
 and $\vec{v} = -3\hat{x} + 3\hat{y}$.

(a) Draw both \vec{u} and \vec{v} in the plane and label the origin.

- (b) Draw the vector $\vec{w} = \vec{u} + \vec{v}$ in the plane.
- (c) Find the area of the parallelogram generated by \vec{u} and \vec{v} .

Solution 2. (a) See the plane below.

(b) Both (a) and (b) are in the plane here:

(c) One could compute the area of the parallelogram generated by \vec{u} and \vec{v} in many ways. First, let us see what this looks like:

In order to compute this area, we can use the cross product by thinking of these vectors as being in 3-dimensional space by

$$\vec{\boldsymbol{u}} = 1\hat{\boldsymbol{x}} + 2\hat{\boldsymbol{y}} + 0\hat{\boldsymbol{z}}$$
 and $\vec{\boldsymbol{v}} = -3\hat{\boldsymbol{x}} + 3\hat{\boldsymbol{y}} + 0\hat{\boldsymbol{z}}.$

Then the cross product of these two vectors must only have a z-component since these two vectors lie in the xy-plane. Thus, we can compute

$$\vec{\boldsymbol{u}} \times \vec{\boldsymbol{v}} = (1 \cdot 3 - (-3) \cdot 2)\hat{\boldsymbol{z}} = 9\hat{\boldsymbol{z}}.$$

Hence, the area is $\|\vec{\boldsymbol{u}} \times \vec{\boldsymbol{v}}\| = \|9\hat{\boldsymbol{z}}\| = 9.$

Problem 3.

(a) We can reflect a vector in the plane by first reflecting basis vectors. Let $R: \mathbb{R}^2 \to \mathbb{R}^2$ be a function be defined by

$$R(\hat{\boldsymbol{x}}) = -\hat{\boldsymbol{x}}$$
 and $R(\hat{\boldsymbol{y}}) = \hat{\boldsymbol{y}}.$

Let $\vec{\boldsymbol{v}} = \alpha_1 \hat{\boldsymbol{x}} + \alpha_2 \hat{\boldsymbol{y}}$ and define

$$R(\vec{\boldsymbol{v}}) = \alpha_1 R(\hat{\boldsymbol{x}}) + \alpha_2 R(\hat{\boldsymbol{y}}).$$

When this is the case, we call the function T linear. Show that R reflects the vector $\vec{u} = 1\hat{x} + 2\hat{y}$ about the y-axis and draw a picture.

(b) We can rotate a vector in the plane by first rotating the basis vectors \hat{x} and \hat{y} . Define a linear function $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by

$$T(\hat{\boldsymbol{x}}) = \hat{\boldsymbol{y}}$$
 and $T(\hat{\boldsymbol{y}}) = -\hat{\boldsymbol{x}}.$

Show that T rotates \vec{u} by $\pi/2$ in the counterclockwise direction and draw a picture.

Solution 3.

(a) So, we can take the vector \vec{u} and then we have

$$R(\vec{\boldsymbol{u}}) = 1R(\hat{\boldsymbol{x}}) + 2R(\hat{\boldsymbol{y}}) = -1\hat{\boldsymbol{x}} + 2\hat{\boldsymbol{y}}.$$

So we can plot both \vec{u} and $R(\vec{u})$ in the plane:

We can see that this is definitely the reflection of the vector \vec{u} across the y-axis.

(b) We can now do this for the function T to get

$$T(\vec{\boldsymbol{u}}) = 1T(\hat{\boldsymbol{x}}) + 2T(\hat{\boldsymbol{y}}) = 1\hat{\boldsymbol{y}} - 2\hat{\boldsymbol{x}}.$$

Then we can plot both \vec{u} and $T(\vec{u})$ in the plane:

We can see that this is definitely the rotation of the vector \vec{u} an angle of $\pi/2$ in the counter-clockwise direction.

Problem 4. Consider the following vectors in space \mathbb{R}^3

$$\vec{u} = 1\hat{x} + 2\hat{y} + 3\hat{z}$$
 and $\vec{v} = -2\hat{x} + 1\hat{y} - 2\hat{z}$

- (a) Compute the dot product $\vec{u} \cdot \vec{v}$.
- (b) Compute the cross product $\vec{u} \times \vec{v}$.
- (c) **(Experimental)** Let us try this: Take

$$\vec{\boldsymbol{u}}\vec{\boldsymbol{v}} = (1\hat{\boldsymbol{x}} + 2\hat{\boldsymbol{y}} + 3\hat{\boldsymbol{z}})(-2\hat{\boldsymbol{x}} + 1\hat{\boldsymbol{y}} - 2\hat{\boldsymbol{z}}).$$

Distribute the above multiplication.

(d) (Experimental) Now, in the above multiplication, adopt the following rules:

$$\hat{x}\hat{x}=\hat{y}\hat{y}=\hat{z}\hat{z}=1$$
 $\hat{x}\hat{y}=-\hat{y}\hat{x}$ $\hat{x}\hat{z}=-\hat{z}\hat{x}$ $\hat{y}\hat{z}=-\hat{z}\hat{y}.$

Then, simplify the multiplication in part (c) to

$$\vec{\boldsymbol{u}}\vec{\boldsymbol{v}} = lpha + eta_1\hat{\boldsymbol{y}}\hat{\boldsymbol{z}} + eta_2\hat{\boldsymbol{z}}\hat{\boldsymbol{x}} + eta_3\hat{\boldsymbol{x}}\hat{\boldsymbol{y}}.$$

That is, what are α , β_1 , β_2 , and β_3 ?

(e) **(Experimental)** If we perform one more step, we will notice something quite nice. Note that the pairs of vectors above define a plane, and there is a unique vector perpendicular to that plane. Using this fact, we can let

$$\hat{y}\hat{z}=\hat{x}$$
 $\hat{z}\hat{x}=\hat{y}$ $\hat{x}\hat{y}=\hat{z}.$

In other words, we can replace the two vectors above with their cross product, (i.e., $\hat{y}\hat{z} = \hat{y} \times \hat{z} = \hat{x}$.) Show that with these rules

$$\vec{u}\vec{v} = \vec{u}\cdot\vec{v} + \vec{u}\times\vec{v}$$
.

Solution 4.

(a) We have that

$$\vec{\boldsymbol{u}} \cdot \vec{\boldsymbol{v}} = 1 \cdot (-2) + 2 \cdot 1 + 3 \cdot (-3)$$
$$= -6.$$

(b) Here, feel free to use a formula for a cross product instead of writing it all out. We will find that

$$\vec{\boldsymbol{u}} \times \vec{\boldsymbol{v}} = -7\hat{\boldsymbol{x}} - 4\hat{\boldsymbol{y}} + 5\hat{\boldsymbol{z}}.$$

(c) Note, I put experimental in these following parts as they are <u>not</u> the traditional way of teaching these topics. However, I think this methodogology gives a more intuitive notion of vectors than the traditional dot and cross products.

So we have

$$\begin{aligned} \vec{\boldsymbol{u}}\vec{\boldsymbol{v}} &= (1\hat{\boldsymbol{x}} + 2\hat{\boldsymbol{y}} + 3\hat{\boldsymbol{z}})(-2\hat{\boldsymbol{x}} + 1\hat{\boldsymbol{y}} - 2\hat{\boldsymbol{z}}) \\ &= -2\hat{\boldsymbol{x}}\hat{\boldsymbol{x}} + 1\hat{\boldsymbol{x}}\hat{\boldsymbol{y}} - 2\hat{\boldsymbol{x}}\hat{\boldsymbol{z}} \\ &+ -4\hat{\boldsymbol{y}}\hat{\boldsymbol{x}} + 2\hat{\boldsymbol{y}}\hat{\boldsymbol{y}} - 4\hat{\boldsymbol{y}}\hat{\boldsymbol{z}} \\ &+ -6\hat{\boldsymbol{z}}\hat{\boldsymbol{x}} + 3\hat{\boldsymbol{z}}\hat{\boldsymbol{y}} - 6\hat{\boldsymbol{z}}\hat{\boldsymbol{z}}. \end{aligned}$$

(d) Now, we can use the rules to find that we get

$$\vec{u}\vec{v} = (-2+2-6) + (-4-3)\hat{y}\hat{z} + (-6+2)\hat{z}\hat{x} + (1+4)\hat{x}\hat{y} \\ = -6 - 7\hat{y}\hat{z} - 4\hat{z}\hat{x} + 5\hat{x}\hat{y}.$$

Hence, we have $\alpha = -6$, $\beta_1 = -7$, $\beta_2 = -4$, $\beta_3 = 5$.

Here we can imagine that there are units attached to the quantities \hat{x} , \hat{y} , and \hat{z} . There is a scalar quantity which contains none of these unit vectors, and there are quantities which contain two (i.e., $\hat{x}\hat{y}$). The quantities containing two unit vectors represent the plane given by the two vectors.

(e) Now, we can identify a unit vector perpendicular to a plane in \mathbb{R}^3 that satisfies the right hand rule given by the cross product. In which case, we replace the above "multivectors" (i.e., $\hat{x}\hat{y}$) with the unique unit vector perpendicular to the two. So we have

$$\vec{\boldsymbol{u}}\vec{\boldsymbol{v}} = -6 - 7\hat{\boldsymbol{x}} - 4\hat{\boldsymbol{y}} + 5\hat{\boldsymbol{z}}$$

which is indeed giving us that

$$ec{u}ec{v} = ec{u}\cdotec{v} + ec{u} imesec{v}.$$

Remark 2. This all falls under the mathematics of *geometric algebra* which is a more general way of understanding vectors. It is rather useful, yet it is not quite mainstream. Maybe one day it will be!

Problem 5. Consider the same vectors $\vec{u}, \vec{v} \in \mathbb{R}^3$ from Problem 4.

- (a) Compute the lengths $\|\vec{u}\|$ and $\|\vec{v}\|$ using the dot product.
- (b) Compute the angle between vectors \vec{u} and \vec{v} . *Hint: Save some work and use results from Problem 4.*
- (c) Compute the projection of \vec{u} in the direction of \vec{v} . Hint: Again, save yourself some time and use results from Problem 4.

Solution 5.

(a) Note that we have

$$\|ec{u}\| = \sqrt{ec{u}\cdotec{u}}$$

and so we have

$$\|\vec{u}\| = \sqrt{1^2 + 2^2 + 3^2} = \sqrt{14}.$$

Similarly,

$$\|\vec{v}\| = \sqrt{(-2)^2 + 1^2 + (-2)^2} = \sqrt{9} = 3.$$

(b) Now, we found $\vec{u} \cdot \vec{v} = -6$ and we have

$$ec{u}\cdotec{v}=\|ec{u}\|\|ec{v}\|\cos heta$$

as well. Hence, it follows that

$$\theta = \arccos\left(\frac{\vec{\boldsymbol{u}} \cdot \vec{\boldsymbol{v}}}{\|\vec{\boldsymbol{u}}\| \|\vec{\boldsymbol{v}}\|}\right)$$
$$= \arccos\left(\frac{-6}{\sqrt{14} \cdot 3}\right)$$
$$\approx 2.1347 \approx 122.3^{\circ}.$$

(c) To compute this projection of \vec{u} onto the direction of \vec{v} , we must first normalize \vec{v} to make \hat{v} . We have

$$\hat{v} = rac{ec{v}}{\|ec{v}\|} = -rac{2}{3}\hat{x} + rac{1}{3}\hat{y} - rac{2}{3}\hat{z}$$

Then we can compute the projection by

$$(\vec{\boldsymbol{u}} \cdot \hat{\boldsymbol{v}})\hat{\boldsymbol{v}} = \left((\hat{\boldsymbol{x}} + 2\hat{\boldsymbol{y}} + 3\hat{\boldsymbol{z}}) \cdot \left(-\frac{2}{3}\hat{\boldsymbol{x}} + \frac{1}{3}\hat{\boldsymbol{y}} - \frac{2}{3}\hat{\boldsymbol{z}} \right) \right)\hat{\boldsymbol{v}}$$

= $2\hat{\boldsymbol{v}}.$

You could also just compute

$$rac{ec{u}\cdotec{v}}{\|ec{v}\|^2}ec{v}$$

and get the same answer.