MATH 271, HOMEWORK 7 DUE NOVEMBER 1st

Problem 1. Let S be the set of general solutions x(t) to the following homogeneous linear differential equation

$$x'' + f(t)x' + g(t)x = 0.$$

Show that this set S is a vector space over the complex numbers by doing the following. Let $x(t), y(t) \in S$ be solutions to the above equation and let $\alpha, \beta \in \mathbb{C}$ be complex scalars.

- (a) Write down the eight requirements for S to be a vector space.
- (b) Identify the $\vec{\mathbf{0}} \in S$ and $1 \in \mathbb{C}$.
- (c) Show that $\alpha x(t) + \beta y(t) \in S$. That is, show that a superposition of solutions is also a solution. *Hint: We have shown this before.*

Problem 2. Consider the following vectors in the real plane \mathbb{R}^2 . We let

 $\vec{u} = 1\hat{x} + 2\hat{y}$ and $\vec{v} = -3\hat{x} + 3\hat{y}$.

- (a) Draw both \vec{u} and \vec{v} in the plane and label the origin.
- (b) Draw the vector $\vec{w} = \vec{u} + \vec{v}$ in the plane.
- (c) Find the area of the parallelogram generated by \vec{u} and \vec{v} .

Problem 3.

(a) We can reflect a vector in the plane by first reflecting basis vectors. Let $R: \mathbb{R}^2 \to \mathbb{R}^2$ be a function be defined by

$$R(\hat{\boldsymbol{x}}) = -\hat{\boldsymbol{x}}$$
 and $R(\hat{\boldsymbol{y}}) = \hat{\boldsymbol{y}}.$

Let $\vec{\boldsymbol{v}} = \alpha_1 \hat{\boldsymbol{x}} + \alpha_2 \hat{\boldsymbol{y}}$ and define

$$R(\vec{\boldsymbol{v}}) = \alpha_1 R(\hat{\boldsymbol{x}}) + \alpha_2 R(\hat{\boldsymbol{y}}).$$

When this is the case, we call the function T linear. Show that R reflects the vector $\vec{u} = 1\hat{x} + 2\hat{y}$ about the y-axis and draw a picture.

(b) We can rotate a vector in the plane by first rotating the basis vectors \hat{x} and \hat{y} . Define a linear function $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by

$$T(\hat{\boldsymbol{x}}) = \hat{\boldsymbol{y}}$$
 and $T(\hat{\boldsymbol{y}}) = -\hat{\boldsymbol{x}}.$

Show that T rotates \vec{u} by $\pi/2$ in the counterclockwise direction and draw a picture.

Problem 4. Consider the following vectors in space \mathbb{R}^3

$$\vec{u} = 1\hat{x} + 2\hat{y} + 3\hat{z}$$
 and $\vec{v} = -2\hat{x} + 1\hat{y} - 2\hat{z}$

- (a) Compute the dot product $\vec{u} \cdot \vec{v}$.
- (b) Compute the cross product $\vec{u} \times \vec{v}$.
- (c) **(Experimental)** Let us try this: Take

$$\vec{\boldsymbol{u}}\vec{\boldsymbol{v}} = (1\hat{\boldsymbol{x}} + 2\hat{\boldsymbol{y}} + 3\hat{\boldsymbol{z}})(-2\hat{\boldsymbol{x}} + 1\hat{\boldsymbol{y}} - 2\hat{\boldsymbol{z}}).$$

Distribute the above multiplication.

(d) (Experimental) Now, in the above multiplication, adopt the following rules:

$$\hat{x}\hat{x}=\hat{y}\hat{y}=\hat{z}\hat{z}=1$$
 $\hat{x}\hat{y}=-\hat{y}\hat{x}$ $\hat{x}\hat{z}=-\hat{z}\hat{x}$ $\hat{y}\hat{z}=-\hat{z}\hat{y}.$

Then, simplify the multiplication in part (c) to

$$ec{u}ec{v} = lpha + eta_1 \hat{y}\hat{z} + eta_2 \hat{z}\hat{x} + eta_3 \hat{x}\hat{y}.$$

That is, what are α , β_1 , β_2 , and β_3 ?

(e) **(Experimental)** If we perform one more step, we will notice something quite nice. Note that the pairs of vectors above define a plane, and there is a unique vector perpendicular to that plane. Using this fact, we can let

$$\hat{y}\hat{z}=\hat{x}$$
 $\hat{z}\hat{x}=\hat{y}$ $\hat{x}\hat{y}=\hat{z}.$

In other words, we can replace the two vectors above with their cross product, (i.e., $\hat{y}\hat{z} = \hat{y} \times \hat{z} = \hat{x}$.) Show that with these rules

$$ec{u}ec{v} = ec{u}\cdotec{v} + ec{u} imesec{v}.$$

Problem 5. Consider the same vectors $\vec{u}, \vec{v} \in \mathbb{R}^3$ from Problem 4.

- (a) Compute the lengths $\|\vec{u}\|$ and $\|\vec{v}\|$ using the dot product.
- (b) Compute the angle between vectors \vec{u} and \vec{v} . *Hint: Save some work and use results from Problem 4.*
- (c) Compute the projection of \vec{u} in the direction of \vec{v} . Hint: Again, save yourself some time and use results from Problem 4.