
MATH 271, Homework 6, Solutions
Due October 18th

Problem 1. Consider the differential equation

f ′(x) =
1√

1− x2
f(x).

(a) Write down the 2nd order Taylor approximation to 1√
1−x2 centered at zero.

(b) Using this second order approximation, find the general solution to the differential equa-
tion using separation.

(c) The solution you find using the approximation doesn’t have an issue at x = 1, but I
claim the original equation does. What is wrong at x = 1? Our approximation is then
only reasonable in the window [0, 1) (and really isn’t that accurate near 1 either).

Solution 1.

(a) We need only compute up to the second derivative of 1√
1−x2 to get the desired approxi-

mation. So we have

f (0)(x) =
1√

1− x2
=⇒ f (0)(0) = 1

f (1)(x) =
x

(1− x2)3/2
=⇒ f (1)(0) = 0

f (2)(x) =
3x2

(1− x2)5/2
+

1

(1− x2)3/2
=⇒ f (2)(0) = 1.

Hence we have that
1√

1− x2
≈ 1 +

x2

2

to second order.

(b) Now the approximate equation is

f ′(x) ≈
(

1 +
x2

2

)
f(x)

which we can solve using separation. Thus,

1

f
df =

(
1 +

x2

2

)
dx

ln(f) = x+
x3

6
+ C

=⇒ f = Cex+
x3

6 .
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(c) As x→ 1− in the above equation, we have that the right hand side may approach infinity
since

lim
x→1−

1

1− x2
=∞.

Now, if f(x) → 0 quickly enough, it could be that these effects mitigate each other to
some extent, but this is not the case. We have that if f(0) = 0, then the solution is
stationary. If f(0) > 0 the solution will grow to infinity by the point x = 1 since f(x)
and f ′(x) will both be positive we already showed the above limit. Similarly, if f(0) < 0,
then the solution grows to negative infinity by the point x = −1 for analogous reasons.

Figure 1: A graph of the true solution (green), and approximate solution (red).
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Problem 2. Consider the differential equation

f ′(x) = xf(x)

with initial condition f(0) = 1.

(a) Find the particular solution to this differential equation using separation.

(b) What is the Taylor series centered at zero for this solution?

(c) Now, assume that the solution f(x) can be written as a power series

f(x) =
∞∑
n=0

anx
n.

Determine all of the coefficients an which will give us the power series representation for
f(x). Hint: use your solution from (a) to help you.

Solution 2.

(a) Using separation,

f ′ = xf

1

f
df = xdx

ln(f) =
x2

2
+ C

f = Ae
x2

2 .

Then with f(0) = 1, we have
1 = A,

so the particular solution is

f(x) = e
x2

2 .

(b) Note that we have

ex =
∞∑
n=0

xn

n!

and thus

e
x2

2 =
∞∑
n=0

(
x2

2

)n
n!

=
∞∑
n=0

x2n

2nn!
.

Now, to solve this using a power series, we assume the ansatz that f(x) takes the form

f(x) =
∞∑
n=0

anx
n.
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Then we also have

f ′(x) =
∞∑
n=1

nanx
n−1,

and we can plug both series into the original equation to get

∞∑
n=1

nanx
n−1 = x

∞∑
n=0

anx
n

∞∑
n=1

nanx
n−1 =

∞∑
n=0

anx
n+1.

So we can solve for the coefficients an to determine f(x),

∞∑
n=1

nanx
n−1 =

∞∑
n=0

anx
n+1

∞∑
n=0

(n+ 1)an+1x
n −

∞∑
n=1

an−1x
n = 0

a1 +
∞∑
n=1

[(n+ 1)an+1 − an−1]xn = 0.

Hence we must have that a1 = 0 and that

(n+ 1)an+1 − an−1 = 0,

which means that

an+1 =
1

n+ 1
an−1.

Since a1 = 0, we have that all odd terms a2n+1 = 0 by the above relationship. Then we have
for the even terms

a2 =
1

2
a0 =

1

21
· 1

1!
a0

a4 =
1

4
a2 =

1

4
· 1

2
a0 =

1

22
· 1

2!
a0

a6 =
1

6
a4 =

1

6
· 1

4
· 1

2
a0 =

1

23
· 1

3!
a0

...

=⇒ a2n =
1

2n
· 1

n!
a0.

Hence our general solution is

f(x) = a0

∞∑
n=0

x2n

2nn!
.
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If we require that f(0) = 1, then a0 = 1 and we have

f(x) =
∞∑
n=0

x2n

2nn!
,

which is exactly what we found in (b).

5



Problem 3. Consider the differential equation

(x− 1)f ′(x) + f(x) = 0

with initial condition f(0) = 1.

(a) Find the solution to this equation using separation.

(b) Find the Taylor series centered at zero for your solution in (a).

(c) Again, suppose that the solution can be written as a power series and determine all the
coefficients an so that we find the power series representation for f(x). Hint: use your
solution from (a) to help you.

Solution 3.

(a)
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Problem 4. We derived two linearly independent (even and odd) solutions to Legendre’s
equation

(1− x2)f ′′(x)− 2xf ′(x) + l(l + 1)f(x) = 0

which were

f(x) =
∞∑
n=0

a2nx
2n and f(x) =

∞∑
n=0

a2n+1x
2n+1.

(a) Look up where this equation shows up in quantum mechanics and write it down.

(b) If we add initial conditions then we get a finite polynomial for each choice of α =
0, 1, 2, 3, . . . . Using this, the first four polynomials are

f0(x) = 1 f1(x) = x

f2(x) = 1− 3x2 f3(x) = x− 5x3

3
.

Show that these above polynomials are orthogonal by showing∫ 1

−1
fi(x)fj(x)dx = 0

when i 6= j.

Solution 4.

(a) This equation arises in quantum mechanics when solving for the solution to the Hydrogen
atom. Specifically, one finds the differential equation

d2y

dθ2
+

cos θ

sin θ

dy

dθ
+

[
(l(l + 1)− m2

sin2 θ

]
y = 0.

If we take m = 0 in the above equation, then we arrive at the Legendre equation provided
above, but in the variable x = cos θ. This variable represents the polar angle part of
the solution found using separation of variables for the central Coulomb potential for a
proton and electron (i.e., the Hydrogen atom).

(b) We simply have to compute integrals for the following pairs of (i, j):

(0, 1) (0, 2) (0, 3) (1, 2) (1, 3) (2, 3).

We compute each ∫ 1

−1
f0(x)f1(x)dx =

∫ 1

−1
1 · xdx

= 0,

since x is an odd function on a symmetric interval about x = 0.
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Next, we take ∫ 1

−1
f0(x)f2(x)dx =

∫ 1

−1
1 · (1− 3x2)dx

=

∫ 1

−1
dx− 3

∫ 1

−1
x2dx

= 2−
[
x3
]1
−1

= 0.

Next, ∫ 1

−1
f0(x)f3(x)dx =

∫ 1

−1
1 ·
(
x− 5x3

3

)
dx

= 0,

since f3(x) is an odd function.

Next, ∫ 1

−1
f1(x)f2(x)dx =

∫ 1

−1
x ·
(
1− 3x2

)
dx

= 0,

since f1(x) is an odd function and f2(x) is an even function and an even function times
an odd function is an odd function.

Next, ∫ 1

−1
f1(x)f3(x)dx =

∫ 1

−1
x ·
(
x− 5x3

3

)
dx

=

∫ 1

−1
x2dx− 5

3

∫ 1

−1
x4dx

=
2

3
− 5

3
· 2

5
= 0.

Lastly, we take ∫ 1

−1
f2(x)f3(x)dx =

∫ 1

−1

(
1− 3x3

)
·
(
x− 5x3

3

)
= 0,

again since the product of an even and odd function is odd. Hence, we have shown the
orthogonality relationship between all the relevant functions.
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