
MATH 271, Homework 5, Solutions
Due October 11th

Problem 1. p-series are actually related to a very important function called the Riemann
zeta function. This function is involved in a million dollar math problem! If you’re interested
in other million dollar problems, look up the Clay Institute Millennium Problems. The
Riemann zeta function is given by

ζ(s) =
∞∑
n=1

1

ns
.

(a) Use the integral test to show that the p-series
∞∑
n=1

1

n2

converges. Look up what this series converges to and write it down. This is ζ(2).

(b) Use the comparison test to show that the p-series
∞∑
n=1

1

n3

converges. This converges as well to ζ(3). Look up what this approximate value is.

Solution 1.

(a) Note that an = f(n) = 1
n2 . Hence we can make a comparison to the integral∫ ∞

1

f(x)dx,

where we start at x = 1 since our sum begins there as well. We evaluate the integral∫ ∞
1

f(x)dx =

∫ ∞
1

1

x2
dx

=

[
−1

x

]∞
1

= lim
b→∞

[
−1

x

]b
1

= lim
b→∞

−1

b
− −1

1
= 1.

So since the integral is finite the series converges. Warning: the integral does not tell us
what the series converges to! The series in fact converges to ζ(2) = π2

6
.

(b) Note that for N ≥ 2 we have that bn = 1
n3 ≤ 1

n2 = an. Thus, since we have this inequality
and we found

∑∞
n=1 an converges, we also have that

∑∞
n=1 bn converges as well. Warning:

again, this comparison test does not tell us what the series converges to. If we look it up
we find that ζ(3) ≈ 1.20206.
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Problem 2. How can we approximate a (possibly complicated) function by using a power
series? Why is this useful (specifically for computation on a computer)?

Solution 2. We can often times approximate a function about a point x = a using a
truncated Taylor series centered about a. What I mean is that we will have a function f(x)
which (inside its interval of convergence) will be equal to

f(x) =
∞∑
n=0

f (n)(a)

n!
(x− a)n

This proves to be very useful as we can take finite truncations of the complete power series
above. Specifically, we have that

f(x) ≈
N∑
n=0

f (n)(a)

n!
(x− a)n.

It turns out that this is a reasonable approximation for f as long as we don’t look too far away
from x = a. Also, computers really only have the ability to add. Of course, multiplication is
sequential adding, division can be done through subtraction and multiplication, and powers
come from sequential multiplication. The point is, computers work with polynomials (or
rational functions) and this gives us a way to realize a complicated non-polynomial function
as (approximately) a polynomial function.
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Problem 3. Consider the function

f(x) =
1

1− x
.

(a) Compute the Maclaurin series for the function.

(b) Find the integral
∫

dx
1−x using the Maclaurin series for f(x) found in (a).

(c) Write down the Maclaurin series for ln(1− x) and compare to your answer in (b).

Solution 3.

(a) To find the Maclaurin series (i.e., the Taylor series centered at a = 0), we must compute
f (n)(0) as we desire to find

f(x) =
∞∑
n=0

f (n)(0)

n!
xn.

The derivatives are

f (0)(x) =
1

1− x
=⇒ f (0)(0) = 1 = 0!

f (1)(x) =
1

(1− x)2
=⇒ f (1)(0) = 1 = 1!

f (2)(x) =
2

(1− x)3
=⇒ f (2)(0) = 2 = 2!

f (3)(x) =
6

(1− x)4
=⇒ f (3)(0) = 6 = 3!

f (4)(x) =
24

(1− x)5
=⇒ f (4)(0) = 24 = 4!

...

f (n)(x) =
n!

(1− x)n+1
=⇒ f (n)(0) = n!.

Hence, if we plug this into the formula for the Maclaurin series we have

f(x) =
∞∑
n=0

xn.

(b) We can integrate this series term by term to find the desired antiderivative. So we have∫
dx

1− x
=

∫ ∞∑
n=0

xndx = C +
∞∑
n=0

xn+1

n+ 1
.

(c) We can find the Maclaurin series for ln(1−x) in the same way as above. However, notice
that d

dx
ln(1− x) = −1

1−x , and thus up to determining the constant C, we have that

−

(
C +

∞∑
n=0

xn+1

n+ 1

)
= ln(1− x).
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Problem 4. Compute the Taylor series centered at a = 0 for f(x) = e−
x2

2 . Then, instead
use the Taylor series for ex and modify it to work for f(x). For each of these power series,
plot the original function f(x) compared to the four term approximation on the same graph.

Solution 4. Again, we find the Taylor series centered at a = 0 by computing f (n)(0). The
derivatives are

f (0)(x) = e−
x2

2 =⇒ f (0)(0) = 1

f (1)(x) = xe−
x2

2 =⇒ f (1)(0) = 0

f (2)(x) = (x2 − 1)e−
x2

2 =⇒ f (2)(0) = −1

f (3)(x) = x(x2 − 3)e−
x2

2 =⇒ f (3)(0) = 0

f (4)(x) = (x4 − 6x2 + 3)e−
x2

2 =⇒ f (4)(0) = 3.

This gives us the first five terms of the Taylor series for f(x) so that we have

f(x) ≈ 1 + 0 +
−1

2
x2 + 0

3

5!
x5.

The easier way is to modify an already known power series like ex. We have

ex =
∞∑
n=0

xn

n!
.

If we replace x 7→ −x2

2
then we have

e−
x2

2 =
∞∑
n=0

(
−x2

2

)
n!

=
∞∑
n=0

(−1)nx2n

2nn!
.

Below is a graph showing the three different functions.
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Figure 1: Red: f(x); Green: Four terms from Taylor series; Purple: Four terms from modified
Taylor series.

Remark 1. The reason why the graphs are different is because the modified series skips the
zero terms that show up in the Taylor series computation. So when we plot four terms in
the modified series, it is equal to plotting the first eight terms of the actual Taylor series.
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Problem 5. Find the radius of convergence for the following power series

(a)
∞∑
n=1

xn

n(n+ 1)
;

(b)
∞∑
n=0

x2n+1

(2n+ 1)!
.

Solution 5.

(a) To find the radius of convergence we must look at the ratio of terms in the sequence as
n→∞. Specifically, we take

lim
n→∞

∣∣∣∣∣
xn+1

(n+1)(n+2)

xn

n(n+1)

∣∣∣∣∣ = lim
n→∞

∣∣∣∣ nx

n+ 2

∣∣∣∣
= |x|.

Now, in order for this series to converge, the ratio test above must give us a limit L < 1,
and hence we must have that |x| < 1. So the radius of convergence is 1.

(b) Similarly, we have

lim
n→∞

∣∣∣∣∣
x2n+3

(2n+3)!

x2n+1

(2n+1)!

∣∣∣∣∣ = lim
n→∞

∣∣∣∣ x2

(2n+ 3)(2n+ 2)

∣∣∣∣
= 0.

Hence the limit is 0 < 1 and so for any value of x this series converges and it follows
that the radius of convergence is infinite.
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