
MATH 271, Homework 4, Solutions
Due October 4th

Problem 1. Consider the following sequences,

an =
1

2
,
1

4
,
1

8
, . . . ,

1

2n
, . . . ,

and

bn = 1,
1

2
,
1

6
,

1

24
, . . . ,

1

n!
, . . . .

(a) For what values of N do we need for aN < 0.01 and bN < 0.01? Note, these will be
different values for N .

(b) Compute lim
n→∞

an.

(c) Compute lim
n→∞

bn.

(d) Which sequence converges more quickly to its limit? (Hint: consider a ratio of the terms
of the sequences and take a limit. Part (a) should help you think about this.)

Solution 1.

(a) Consider first the sequence given by an. Now, we want to find a value for N so that

aN =
1

2N
< 0.01.

We can play with this algebraically by

1

2N
< 0.01

100 < 2N

log2(100) < N

≈ 6.644 < N.

Since N is an integer, we round up to get N = 7.

For the sequence given by bn we do the same and we want to find

bN =
1

N !
< 0.01

100 < N !

which has no nice inverse function to use (like log2 for 2x), so we just need to try a few
values. We have

1! = 1 2! = 2 3! = 6 4! = 24 5! = 120,

so N = 5 works.
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(b) Since an = f(n) = 1
2n

we can consider

lim
n→∞

f(n) = lim
x→∞

f(x) = lim
x→∞

1

2x
= 0,

by our knowledge of limits from Calculus 1.

(c) We can do this a few ways. For one, we know that n! grows unboundedly as n gets larger
and larger so limn→∞ n! = +∞ and so limn→∞

1
n!

= 0. We could also prove this more
rigorously by comparing bn to an. Notice that for K ≥ 3 we have 0 < bK < aK and since
an → 0, we have bn → 0. One could also use the ε definition for convergence.

(d) If we consider the limit of the ratio of the terms in the sequence as follows

lim
n→∞

∣∣∣∣anbn
∣∣∣∣

then we can see which grows faster than the other. Let’s investigate further

lim
n→∞

∣∣∣∣anbn
∣∣∣∣ = lim

n→∞

∣∣∣∣ 1
2n

1
n!

∣∣∣∣
= lim

n→∞

∣∣∣∣n!

2n

∣∣∣∣
= lim

n→∞

∣∣∣∣n · (n− 1) · (n− 2) · · · 2 · 1
2 · 2 · 2 · · · 2 · 2

∣∣∣∣ .
Here, notice that there are n terms in the numerator, and n in the denominator. However,
most of the terms in the numerator are larger than 2 (and, for example, 4 = 2 · 2). So,
the denominator is larger especially as n gets larger and we find

lim
n→∞

∣∣∣∣anbn
∣∣∣∣ =∞

which means that bn → 0 faster than an → 0.

Remark 1. I have shown some work here that looks complicated and we haven’t totally
covered in class. So, I don’t expect your solutions to be as clean as mine! What I wanted
you to do was just think about these ideas and try to gain intuition. Especially with part
(d).
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Problem 2. With the same an from 1, consider the series

A =
∞∑
n=1

an.

(a) Write down the N th partial sum AN for this series.

(b) Does this sequence of partial sums converge? If so, to what?

(c) Note that this is an geometric series with a = 1 and r = 1
2
. However, we start from

n = 1 instead of n = 0. Show the value that this series converges to using the formula
for a geometric series.

Solution 2.

(a) The N th partial sum is given by

N∑
n=1

an =
N∑

n=1

1

2n
=

1

2
+

1

4
+

1

8
+ · · ·+ 1

2N
.

(b) Let us take a look at the sequence of partial sums

A1 =
1

2
A2 =

3

4
A2 =

7

8
A3 =

15

16
,

which leads us to

AN =
2N − 1

2N
.

Thus we can take

lim
N→∞

An = lim
N→∞

2N − 1

2N
= 1.

So the series converges to 1.

(c) There is a formula for a geometric series

∞∑
n=1

arn =
ar

1− r
.

If we take a = 1 and r = 1
2

then

∞∑
n=1

1

2n
=

1 · 1
2

1− 1
2

=
1

.

So our result is identical.
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Problem 3. With the same bn from 1, consider the series

B =
∞∑
n=0

bn.

(a) Use the ratio test to show that this series converges.

(b) Approximate the value the series converges to by considering larger and larger partial
sums.

(c) What number does this series converge to?

Solution 3.

(a) Consider the limit for the ratio test

lim
n→∞

∣∣∣∣bn+1

bn

∣∣∣∣ = lim
n→∞

∣∣∣∣∣
1

(n+1)!

1
n!

∣∣∣∣∣
= lim

n→∞

∣∣∣∣ n!

(n+ 1)!

∣∣∣∣
= lim

n→∞

∣∣∣∣ 1

n+ 1

∣∣∣∣
= 0.

So by the ratio test, the series converges.

(b) Using a tool like WolframAlpha, we can compute approximations to the series using
partial sums. For example, we can take

1∑
n=0

bn = 2

5∑
n=0

bn ≈ 2.7166...

50∑
n=0

bn ≈ 2.718281828459

That is, I put

sum[1/n!,{n,0,N}]

into WolframAlpha (but of course replaced N with the chosen N values above).

(c) Again, one could use WolframAlpha to find what this series converges to and we get
that

e =
∞∑
n=0

1

n!
≈ 2.718281828459.
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Problem 4. Consider the two series

cos(x) =
∞∑
n=0

(−1)nx2n

(2n)!
and sin(x) =

∞∑
n=0

(−1)nx2n+1

(2n+ 1)!
.

(a) Show that cos(−x) = cos(x).

(b) Show that sin(−x) = − sin(x).

(c) To take a derivative of a power series f(x) =
∞∑
n=0

anx
n we can do the following:

d

dx
f(x) =

d

dx

∞∑
n=0

anx
n =

∞∑
n=0

an
d

dx
xn.

Compute d
dx

sin(x) and d
dx

cos(x) and show that they are equal to what you already know.
Warning: be careful with the powers of x in the case with sin and cos!

Solution 4.

(a) We take

cos(−x) =
∞∑
n=0

(−1)n(−x)2n

(2n)!
=
∞∑
n=0

(−1)n ((−x)2)
n

(2n)!

=
∞∑
n=0

(−1)nx2n

(2n)!

= cos(x).

Fundamentally, this is because all powers of x in the terms in the series are even. This
is why we call cos an even function!

(b) Similarly, we take

sin(−x) =
∞∑
n=0

(−1)n(−x)2n+1

(2n+ 1)!
=
∞∑
n=0

(−1)n(−x) · (−x)2n

(2n+ 1)!

= −
∞∑
n=0

(−1)nx · x2n

(2n+ 1)!

= −
∞∑
n=0

(−1)x2n+1

(2n+ 1)!

= − sin(x).

Again, this is happening due to the fact that all powers of x in the terms for the series
are odd. This is why we call sin an odd function.
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(c) Consider first d
dx

sin(x). We take

d

dx

∞∑
n=0

(−1)nx2n+1

(2n+ 1)!
=

d

dx

(
x− x3

3!
+
x5

5!
− · · ·

)
=

d

dx
x− d

dx

x3

3!
+

d

dx

x5

5!
− · · ·

= 1− x2

2!
+
x4

4!
− · · · .

These are the first few terms of the cos(x) series. Notice if we take

d

dx

(−1)nx2n+1

(2n+ 1)!
=

(−1)x2n

(2n)!
.

So we have
d

dx
sin(x) = cos(x).

When we consider d
dx

of cos(x) we have to be a bit more careful. Let’s see what happens.
We take

d

dx

∞∑
n=0

(−1)nx2n

(2n)!
=

d

dx

(
1− x2

2!
+
x4

4!
− · · ·

)
=

d

dx
1− d

dx

x2

2!
+

d

dx

x4

4!
− · · ·

= 0− x+
x3

3!
− · · ·

which look like the first terms in the series for − sin(x). However, let’s take a derivative
of the term

d

dx

(−1)nx2n

(2n)!
=

(−1)nx2n−1

(2n− 1)!
.

Now if we were to have this in our series we find

d

dx

∞∑
n=0

(−1)nx2n

(2n)!
6=
∞∑
n=0

(−1)nx2n−1

(2n− 1)!
,

since the first term on the right has an x−1 in it! When we write out the terms of the
series and differentiate them, we don’t make this mistake. We just have to be careful.
What we really should have is

d

dx

∞∑
n=0

(−1)nx2n

(2n)!
=
∞∑
n=1

(−1)nx2n−1

(2n− 1)!

=
∞∑
n=0

(−1)n+1x2n+1

(2n+ 1)!

= − sin(x).

Notice above I reindexed the series. This is not something I’m going to worry too much
about you doing.
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Remark 2. Again, some of my work here is beyond what I was expecting. If you would have
taken the derivatives of the first few terms and showed they are equal, you can extrapolate
beyond that and assume it will work for the rest of the terms. Just be careful with this!

7



Problem 5. Consider the p-series :
∞∑
n=1

1

np
.

(a) For p = 1, show that the ratio test is inconclusive.

(b) For p = 2, show that the ratio test is again inconclusive.

(c) Look up the sum of the series for p = 1 and p = 2. Notice how the ratio test is not
perfect!

Solution 5.

(a) Let us take p = 1. Then we have

∞∑
n=1

1

n
.

This is known as the harmonic series. Now, the limit for the ratio test is

lim
n→∞

∣∣∣∣∣ 1
n+1
1
n

∣∣∣∣∣ = lim
n→∞

∣∣∣∣ n

n+ 1

∣∣∣∣
= 1.

So the ratio test is inconclusive.

(b) Similarly, for p = 2, we have the limit for the ratio test

lim
n→∞

∣∣∣∣∣
1

(n+1)2

1
n2

∣∣∣∣∣ = lim
n→∞

∣∣∣∣ n2

n2 + 2n+ 1

∣∣∣∣
= lim

n→∞

∣∣∣∣n2

n2

∣∣∣∣
= 1.

Note that here I used the fact that the leading power term dominates in the limit. Thus,
we again have the ratio test is inconclusive.

(c) We have that the p-series for p = 1 diverges and

∞∑
n=1

1

n2
=
π2

6
.
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