
MATH 271, Homework 3, Solutions
Due September 20th

Problem 1. Consider the second order chemical reaction given by

A+B
k−→ Products.

(a) Write a system of differential equations to describe the concentration of the reactants A
and B (this means write one for each).

(b) The concentrations of A and B can be related to each other in the following way: Let
A = A0 − x and B = B0 − x. Here, we think of x as the amount of each chemical that
has reacted, and note that it depends on time t. Use this change of variables to rewrite
the differential equation for chemical A in terms of x and t.

(c) Solve the differential equation in (b) with the initial condition x(0) = 0.You will need to
use partial fraction decomposition to evaluate the integral.

Solution 1.

(a) The system of equations we will get is

−dA
dt

= kAB

−dB
dt

= kAB.

(b) Now, let A = A0 − x and B = A0 − x and, since A0 and B0 are constant, we get the
equation for A,

−dx
dt

= k(A0 − x)(B0 − x).

It turns out B has the same equation.

(c) This is a separable equation, so we can find the solution by

−dx
dt

= k(A0 − x)(B0 − x)∫
dx

(A0 − x)(B0 − x)
= −k

∫
dt.

Here, we can use the partial fraction decomposition to get

1

A0 −B0

log

(
x− A0

x−B0

)
= −kt+ C.
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Then we can find
x− A0

x−B0

= e−kt+C

With x(0) = 0 we have
−A0

−B0

= e−kteC

and so eC = A0

B0
. We can rewrite this in terms of A and B as

A

B
=
A0

B0

e−kt.
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Problem 2. If x1(t) and x2(t) are solutions to the differential equation

x′′ + bx′ + cx = 0

is x = x1 + x2 + k for a constant k always a solution? Is the function y = tx1 a solution?

Solution 2. x and y are not solutions. Let’s see why. We note that x1 and x2 are solutions
and thus

x′′i + bx′i + cxi = 0 for i = 1, 2.

Now, we check if x is a solution by plugging into the left hand side

x′′ + bx′ + cx = (x1 + x2 + k)′′ + b(x1 + x2 + k)′ + c(x1 + x2 + k)

= x′′1 + bx′1 + cx1︸ ︷︷ ︸
=0

+x′′2 + bx′2 + cx2︸ ︷︷ ︸
=0

+ck

= ck 6= 0.

So this x is not a solution.
Similarly, we take y = tx1 and plug it into the left hand side and find

y′′ + by′ + cy = (tx1)
′′ + b(tx1)

′ + c(tx1)

= tx′′1 + 2x′1 + b(tx′1 + x1) + c(tx1)

= t (x′′1 + bx′1 + cx1)︸ ︷︷ ︸
=0

+2x′1 + bx1

= 2x′1 + bx1,

which is not in general a solution unless x1 = 0.
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Problem 3. Consider the following initial value problem:

x′′ + 4x′ + 3x = 0

with initial data x(0) = 1, x′(0) = 0.

(a) Find the solution.

(b) Sketch a plot of the solution.

(c) Explain in words what is happening to the solution as time goes on. What happens as
t→∞?

Solution 3.

(a) We can solve this homogeneous second order linear equation with constant coefficients
by finding roots to its characteristic polynomial. In this case, that amounts to

λ2 + 4λ+ 3 = 0

⇐⇒ (λ+ 3)(λ+ 1) = 0,

so the roots are λ1 = −1 and λ2 = −3. Thus our general solution is

x(t) = C1e
λ1t + C2e

λ2t = C1e
−t + C2e

−3t.

Then we use the initial conditions to find a particular solution. Namely,

1 = x(0) = C1e
−0 + C2e

−3·0 = C1 + C2

0 = x′(0) = −C1e
−0 − 3C2e

−3·0 = −C1 − 3C2.

Using the second equation we get C1 = −3C2. We can plug this into the first equation
to get

1 = −3C2 + C2 = −2C2

meaning that C2 = −1
2
. Thus C2 = 3

2
. Hence, our particular solution for this IVP is

x(t) =
3

2
e−t − 1

2
e−3t.

(b) Here is a plot of the particular solution from time t = 0 to time t = 10.

4



(c) The solution decays exponentially over time. As t→∞ our solution approaches zero.
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Problem 4. Write down a homogeneous second-order linear differential equation where the
system displays a decaying oscillation.

Solution 4. Since our solution should oscillate and decay, we need some form of a “spring”
and some form of damping. These terms show up respectively as b and c in the equation

x′′ + bx′ + cx = 0.

Now, also note that (aside from one special case of two of the same real roots), our general
solution has the form

x(t) = C1e
λ1t + C2e

λ2t

where λ1 and λ2 are roots to the characteristic polynomial

λ2 + bλ+ c = 0.

Now, the roots for the characteristic polynomial are

λ =
−b±

√
b2 − 4c

2
.

• To have oscillation, our roots must have an imaginary part and thus

b2 − 4c < 0.

In other words, b2 < 4c.

• To have a decaying solution, the real part of the roots must be negative. The real part
of the roots will be −b

2
and thus we need

−b
2
< 0.

Now, I’ll choose b = 1 and c = 1 which satisfy both of these requirements. We then have

x′′ + x′ + x = 0

as our equation.
Note, we can also find the solution as the roots are then

λ =
−1±

√
1− 4

2
=
−1

2
±
√

3

2
.

Plugging this into the form for the general solution and we get

x(t) = e−
1
2
t

(
C1 sin

(√
3

2

)
+ cos

(√
3

2

))
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Problem 5. Consider the following differential equation:

x′′ + 2x′ + x = 3e−t + 2t.

(a) Find the homogeneous solution xH(t).

(b) Find the particular integral xP (t).

(c) Find the specific solution corresponding to the initial data x(0) = 0, x′(0) = 0.

Solution 5.

(a) The roots to characteristic polynomial satisfy

λ2 + 2λ+ 1 = 0

which can be found by factoring
(λ+ 1)2 = 0,

which gives us that λ = −1 is the only root. Thus, this is the special case where our
general solution looks slightly different. We’ll have

xh(t) = C1e
−t + C2te

−t.

(b) The right hand side has a e−t term which is already present in our xh. In fact, this
means we have to take kt2e−t as a guess for this part of xp. Then, we also have a 2t
term, so our xp should be

xp = kt2e−t + a0 + a1t.

Now we have to find the undetermined coefficients by plugging in and solving

x′′p + 2x′p + xp = 3e−t + 2t

2ke−t − 4kte−t + kt2e−t + 2(2kte−t − kt2e−t + a1) + kt2e−ta1t+ a0 = 3e−t + 2t

which gives us that k = 3
2
, a1 = 2, and a0 = −4. So

xp(t) =
3

2
t2e−t + 2t− 4.

(c) Now, we take it that our solution is of the form

x(t) = xh + xp = C1e
−t + C2te

−t +
3

2
t2e−t + 2t− 4.

If we take
0 = x(0) = C1 − 4

then C1 = 4, and
0 = x′(0) = −4 + C2 + 2

so C2 = 2. Thus, our specific solution is

x(t) = (4 + 2t)e−t +
3

2
t2e−t + 2t− 4.
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