
MATH 271, Homework 1, Solutions
Due September 6th

Problem 1. Look up how to do integration by parts. Use this technique to compute the
integral ∫

te3tdt.

Solution 1. Integration by parts is a combination of the derivative product rule and the
fundamental theorem of calculus. Given functions u(x) and v(x) we can write

(uv)′ = u′v + uv′.

Then if we integrate both sides, we have∫ b

a

(uv)′dx =

∫ b

a

u′vdx+

∫ b

a

uv′dx.

Fundamental theorem of calculus gives us that∫ b

a

(uv)′dx = u(b)v(b)− u(a)v(a)

and thus ∫ b

a

u′vdx = u(b)v(b)− u(a)v(a)−
∫ b

a

uv′dx.

Or, without bounds on the integral, we can write∫
u′vdx = uv −

∫
uv′dx.

I like to think of integration by parts as shifting the derivative from one function to another
with a penalty term. Above, we swap a derivative on u to a derivative on v but have to
correct with the function uv. This can all be derived in higher dimensions using Stokes’
theorem. It’s an excellent tool in the study of differential equations.

Now, the technique to doing integration by parts is to identify a function that when we
take its derivative it gets simpler. So, in our integral∫

te3tdt

we have that t is a function that gets simpler when we take its derivative. That is, d
dt
t = 1.

So, I’ll let u′ = e3t and v = t. Then we have u = 1
3
e3t and v′ = 1. Let’s replace these into

our formula ∫
u′vdt = uv −

∫
uv′dt∫

e3ttdt =
t

3
e3t −

∫
1

3
e3t · 1dt

=
t

3
e3t − 1

9
e3t + c

=

(
t

3
− 1

9

)
e3t + c.
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Problem 2. Convert the following numbers in Cartesian coordinates to polar coordinates
and compute all pairwise products.

(a) z1 = 1
2
− 1

2
i;

(b) z2 = −1 + 3i;

(c) z3 = −2− 3i.

Solution 2.

(a) We have that

r =
√
z1z∗1 =

√
1

4
+

1

4
=

1√
2

and since a > 0,

θ = arctan

(
1/2

−1/2

)
= −π

4
.

So

z1 =
1√
2
e−i

π
4 .

(b) We have a < 0 so

r =
√

10 and θ = arctan

(
3

−1

)
+ π

giving us that
z2 ≈

√
10e1.893i.

(c) Again, a < 0 so we have,

r =
√

13 and θ = arctan

(
−3

−2

)
+ π.

Hence,
z3 ≈

√
13e4.124i.

Now we can compute all pairwise products.

z1z2 = 1 + 2i ≈ 2.236e1.107i

z1z3 =
1

2
− 5

2
i ≈ 2.550e−1.373i

z2z3 = 11− 3i ≈ 11.402e−0.266i.
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Problem 3. Find the square roots of −i using a geometrical argument.

Solution 3. Thinking of −i = ei
3π
2 we can find the square root by finding a number that

has a half this rotation in a clockwise way, or a counter clockwise way. So, we have

√
−i = ei

3π
4

and √
−i = e−i

π
4 .

Here’s a picture to illustrate this.

Re

Im

−i

ei
3π
4

e−i
π
4
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Problem 4. Draw the unit circle in the complex plane. Plot the complex numbers z1, z2, and
z3 given above and find their inverses. Explain what taking the inverse does geometrically.

Solution 4. From the previous problem we had

z1 =
1

2
− 1

2
i =

1√
2
e−i

π
4

z2 = −1 + 3i ≈
√

10e−1.893i

z3 = −2− 3i ≈
√

13e4.4124i.

Recall that the inverse for a complex number z = a+ bi = reiθ is given by

z−1 =
z∗

‖z‖2
=

a

a2 + b2
− bi

a2 + b2

or in polar coordinates by

z−1 =
1

r
e−iθ.

So we have

z−1
1 = 1 + i =

√
2ei

π
4

z−1
2 =

−1

10
− 3i

10
≈ 1√

10
e1.893i

z−1
3 =

−2

13
+

3i

13
≈ 1√

13
e−4.4124i.
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Re

Im

z1

z2

z3

z1
−1

z−1
2

z−1
3

Geometrically what the inverse does is reverses the angle (or argument) θ of the complex
number to −θ and scales the length r by 1/r.
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Problem 5. Look up a differential equation in chemistry that interests you. Write it down,
and explain what it attempts to model.

Solution 5. One that interests me is the Schrödinger equation. It is useful in describing
the motion of subatomic particles and gives rise to the structure of the hydrogen atom. One
can then expand a bit to study the helium atom and generalize this further to understand
the whole of the periodic table. The equation is, to me, a bit like a square root of a wave
equation. The wave equation is

∇2f(r, t) =
1

c2

∂2

∂t2
f(r, t),

which describes, for example, the vibration of a guitar string or ripples on the surface of a
pool. The Schrödinger equation is(

−~2

2m
∇2 + V (r, t)

)
Ψ(r, t) = i~

∂

∂t
Ψ(r, t).

This equation is essentially the quantum version of Newton’s law F = ma. The equation is
very successful at modelling interactions of very small particles such as protons and electrons.
The function V is an external potential which could come from, say, an electric field. When
V = 0, then we have something very similar to a wave equation. The function we wish to
solve for is Ψ. However, Ψ itself is not really physical. But, it gives rise to statistics which
we can measure. For example, if we have a solution Ψ to the equation that describes the
position of a particle, then ∫

Ω

Ψ∗(r′, t)Ψ(r′, t)dr′

gives the probability of a particle being in the region Ω at time t.
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Problem 6. What is a differential equation? What does it mean for a function to be a
solution to a differential equation?

Solution 6. A differential equation is an expression containing a function and its derivatives.
The idea is that a differential equation relates the rate of change of a function at a point with
its values at that point. For example, a function may have a rate of change proportional to
its current value which gives rise to

x′(t) = kx(t).

A function is a solution to a differential equation if, when we plug it in, the expression holds
true. The solution may describe the path a particle takes over time, or a how a system
chages in space, or many other things really.
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