MATH 271, HOMEWORK 0 DUE AUGUST 30TH

Tell me a little bit about yourself!

Question 1. Where did you grow up? Why did you choose Colorado State University?

Question 2. What is something interesting about yourself. What is a favorite hobby of yours?

Question 3. Why are you interested in chemistry? Do you have plans after you earn your degree?

Question 4. Honest answers appreciated here. Do you enjoy mathematics? Do you think it's hard? What do you hope to gain from this course?

Now for some mathematics.

Problem 1. Compute the following:

(a)
$$\frac{d}{dx}(2x^7 - 3x^4 + 7);$$

(b)
$$\frac{d}{dt}(e^{at}\sin(bt));$$

(c)
$$\frac{d}{ds}(\tan(e^{s^2})).$$

Problem 2. Compute the following:

(a)
$$\int 2x^7 - 3x^4 + 7dx;$$

(b) $\int_{-1}^{1} \cos(t)dt;$
(c) $\int_{0}^{1} e^{2y}dy;$

Problem 3. Find the point(s) of intersection of the parabola $f(x) = 2x^2 + 2x + 2$ and the line g(x) = 4x + 4. Draw a picture and identify what's happening. (You can plot this on Desmos and print that out if you'd like, but do the algebra to find the solution by hand.)

Problem 4. Now take the same parabola $f(x) = 2x^2 + 2x + 2$ and the line h(x) = 4x - 4. Draw a picture to show that these parabolas do not intersect. We can find "complex intersections" by doing the same algebra as the previous problem. Find these complex intersections. (*Hint: set up an equation whose roots would give you the intersections of these two curves.*)