
MATH 255, Homework 3: Solutions

Relevant Sections: 17.4, 17.5, 17.6, 18.4, 18.2, 18.6

Problem 1. Consider the system of linear equations:

3x+ 2y + 0z = 5

1x+ 1y + 1z = 3

0x+ 2y + 2z = 4.

(a) Write the augmented matrix M for this system of equations.

(b) Use row reduction to get the augmented matrix in row-echelon form.

(c) Determine the solution to the system of equations.

Solution 1. (a) We have

M =

 3 2 0 5
1 1 1 3
0 2 2 4

 .
(b) We row reduce to the identity matrix on the left side of the bar. So

Replace R2 with R2 − 1/2R3 =⇒ M =

 3 2 0 5
1 0 0 1
0 2 2 4


Replace R1 with R1 − 3R2 =⇒ M =

 0 2 0 2
1 0 0 1
0 0 2 2


Replace R3 with R3 −R1 =⇒ M =

 0 2 0 2
1 0 0 1
0 0 2 2


Swap R1 and R2 =⇒ M =

 1 0 0 1
0 2 0 2
0 0 2 2


Divide R2 and R3 by 2 =⇒ M =

 1 0 0 1
0 1 0 1
0 0 1 1


(c) The above row reduction gives us the system

1x+ 0y + 0z = 1

0x+ 1y + 0z = 1

0x+ 0y + 1z = 1

which means that x = y = z = 1.
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Problem 2. Let

A =

1 3 2
0 2 1
2 1 2

 b =

 1
−3
13

 .
(a) Compute det(A) and determine whether the equation Ax = b has a solution.

(b) Create an augmented matrix M for this system of equations.

(c) Determine the solution to the system of equations.

Solution 2. (a) To see whether this inhomogenous system has a unique solution, we take

det(A) = 1.

Since det(A) = 1 6= 0 we know that there exists a unique solution. (There are proposi-
tions for inhomogenous and homogeneous equations in the notes. Be sure to take note
of these.)

(b) We have

M =

 1 3 2 1
0 2 1 −3
0 0 1/2 7/2

 .
(c) We perform row reduction to get the identity on the left side of the bar in M . I omit

the steps here but you find that x = 2, y = −5, and z = 7 so that

x =

 2
−5
7

 .
Problem 3. Find the inverse matrix for each of the following:

(a)

A =

[
0 1
−1 0

]
.

(b)

B =

1 1 0
1 0 1
0 1 1

 .
Solution 3. (a) We create the augmented matrix

M =

[
0 1 1 0
−1 0 0 1

]
.

Then we row reduce the left hand side of the bar to the identity matrix.

Swap R1 and R2 =⇒
[
−1 0 0 1
0 1 1 0

]
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Multiply R1 by −1 =⇒
[

1 0 0 −1
0 1 1 0

]
.

So we have

A−1 =

[
0 −1
1 0

]
.

We can verify this by

A−1A =

[
0 −1
1 0

] [
0 1
−1 0

]
=

[
1 0
0 1

]
.

(b) We repeat this process again. First we make

M =

 1 1 0 1 0 0
1 0 1 0 1 0
0 1 1 0 0 1

 .
We then row reduce the left side of the bar to the identity matrix. I omit the work here,
but in the end you have  1 0 0 1/2 1/2 −1/2

0 1 0 1/2 −1/2 1/2
0 0 1 −1/2 1/2 1/2

 .
So we have

B−1 =

 1/2 1/2 −1/2
1/2 −1/2 1/2
−1/2 1/2 1/2

 .
You can perform the same check as we did for the previous part.

Problem 4. Construct transformation matrices that represent the following rotations about
the z-axis:

(a) Counterclockwise through 45◦ = π
4
.

(b) Counterclockwise through 90◦ = π
2
.

(c) Clockwise through 90◦ = π
2
.

(Hint: This necessary matrix is given to you in the notes and in the book, chapter 18).

Solution 4. The book provides us the matrix

R =

[
cos θ − sin θ
sin θ cos θ

]
which rotates a vector in the plane by an angle θ in the counterclockwise direction. However,
it is worth looking to see how this is derived (though I did not want you to derive this
yourself).
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Recall from Homework 2 Problem 4 that we can understand a linear transformation
entirely by how it transforms the basis vectors. In this case, we want

R

([
1
0

])
R

([
0
1

])
to each be rotated by an angle θ. So we draw the following Here we notice that

R

([
1
0

])
=

[
cos θ
sin θ

]
and

R

([
0
1

])
=

[
− sin θ
cos θ

]
.

This leads us exactly to

R =

[
cos θ − sin θ
sin θ cos θ

]
.

(a) We plug in θa = π/4 and find

Ra =

[
1√
2
− 1√

2
1√
2

1√
2

]
.

(b) We plug in θb = π/2 and find

Rb =

[
0 −1
1 0

]
.

(c) We plug in θc = −π/2 since a negative angle will rotate clockwise. Then we get

Rc =

[
0 1
−1 0

]
.

Problem 5. Find the eigenvalues and eigenvectors for the following matrices.
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(a)

A =

[
5/2 1/2
1/2 5/2

]
.

(b)

B =

−1/2 1/2 −1/2
−1/2 1/2 1/2
−1 1 0

 .
Solution 5. (a) First, we take

det(A− λI) =

∣∣∣∣ 5/2− λ 1/2
1/2 5/2− λ‘

∣∣∣∣ = (5/2− λ)2 − 1/4.

We set this equal to zero and simplify to find

λ2 + 5λ+ 6 = 0

(λ− 2)(λ− 3) = 0

meaning that we have λ1 = 2 and λ2 = 3. Then we find each eigenvector.

For λ1 = 2:

We solve
(A− 2I)v1 = 0.

Writing this out as an augmented matrix, we get

M =

[
1/2 1/2 0
1/2 1/2 0

]
Row reducing as much as we can gives us[

1 1 0
0 0 0

]
and the system of equations

1x+ 1y = 0

0x+ 0y = 0.

The second equation means that y is a free variable. I’ll choose y = 1. Then we get that
x = −y from the first equation. So we have that

v1 =

[
1
−1

]
.

Of course, you can choose any nonzero value for y.

For λ2 = 3:
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We solve
(A− 3I)v2 = 0.

Writing this out as an augmented matrix, we get

M =

[
−1/2 1/2 0
1/2 −1/2 0

]
Row reducing as much as we can gives us[

−1 1 0
0 0 0

]
and the system of equations

−1x+ 1y = 0

0x+ 0y = 0.

The second equation means that y is a free variable. I’ll choose y = 1. Then we get that
x = y from the first equation. So we have that

v2 =

[
1
1

]
.

Fun fact: If we take the eigenvectors and place them in a matrix

P =
[
v1 v2

]
=

[
1 1
−1 1

]
.

Then we can write
A = PDP−1

where

D =

[
2 0
0 3

]
is a diagonal matrix containing the eigenvalues of A along the diagonal. This is where
the name diagonalization comes from. This process can be generalized and it yields what
is called the singular value decomposition or SVD. SVD is widely used in data analysis
and is an extremely important result of linear algebra!

(b) We repeat the usual process here. First

det(B − λI) = 0

=⇒ λ− λ3 = 0

=⇒ λ(λ− 1)(λ+ 1) = 0.

So the eigenvalues are
λ1 = 0 λ2 = 1 λ3 = −1.

I omit the work here, but the corresponding eigenvectors are

v1 =

1
1
0

 v1 =

0
1
1

 v3 =

1
0
1

 .
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