
MATH 255, Homework 2: Solutions

Relevant Sections: 18.1, 18.3, 17.2, 17.2, 17.3.

Problem 1. Which of the following are linear transformations? For those that are not,
which properties of linearity (the properties (i), (ii), and (iii) in our notes) fail? Show your
work.

(a) Ta : R→ R given by Ta(x) = 1
x
.

(b) Tb : R3 → R2 given by

Tb

xy
z

 =

[
x
y

]
.

(c) Tc : R→ R3 given by

Tc(t) =

 tt2
t3

 .
(d) Td : R2 → R3 given by

Td

([
x
y

])
=

x+ y
x+ y
x+ y

 .
Solution 1. The three checks we make to see if T is linear are

(i) T (v + w) = T (v) + T (w);

(ii) T (λv) = λT (v);

(iii) T (0) = 0.

Logically, (i) or (ii) imply (iii). However, (iii) is a nice quick check for linearity.

(a) This function is nonlinear. To see this, let us compare the Left Hand Side (LHS) with
the Right Hand Side (RHS).

(i) LHS:

Ta(x+ y) =
1

x+ y
.

RHS:

Ta(x) + Ta(y) =
1

x
+

1

y
.

Clearly we have LHS 6=RHS. Just take x = y = 1.
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(ii) LHS:

Ta(λx) =
1

λx
.

RHS:

λTa(x) =
λ

x
.

So LHS 6=RHS.

(iii) We cannot even consider 1/0 as this is not well-defined. Clearly (iii) does not hold.

(b) This function is linear.

(i) LHS:

Tb(v + w) = Tb

x1y1
z1

+

x2y2
z2

 = Tb

x1 + x2
y1 + y2
z1 + z2

 =

[
x1 + x2
y1 + y2

]
.

RHS:

Tb(v) + Tb(w) = Tb

x1y1
z1

+ Tb

x2y2
z2

 =

[
x1
y1

]
+

[
x2
y2

]
=

[
x1 + x2
y1 + y2

]
.

So the LHS=RHS.

(ii) LHS:

Tb(λv) = Tb

λ
xy
z

 = Tb

λxλy
λz

 =

[
λx
λy

]
.

RHS:

λTb(v) = λTb

xy
z

 = λ

[
x
y

]
=

[
λx
λy

]
.

So LHS=RHS.

(iii) We have

Tb(0) = Tb

0
0
0

 =

[
0
0

]
.

Notice that these are the 0 in different dimensional vector spaces (i.e., R3 and R2).
This is allowed. Just understand that changing the dimension does not change the
idea of what we consider to be the origin. Maybe we should denote the input 03

and the output 02. However, it is really unimportant to us at this moment.

(c) This function is nonlinear.

2



(i) LHS:

Tc(t1 + t2) =

 t1 + t2
(t1 + t2)

2

(t1 + t2)
3

 .
RHS:

Tc(t1) + Tc(t2) =

t1t21
t31

+

t2t22
t32

 =

t1 + t2
t21 + t22
t31 + t32

 .
So LHS 6=RHS. Just take t1 = t2 = 1 to see this.

(ii) LHS:

Tc(λt) =

 λt
(λt)2

(λt)3

 .
RHS:

λTc = λ

 tt2
t3

 =

 λtλt2
λt3

 .
So LHS 6=RHS.

(iii) Take

Tc(0) =

0
0
0

 .
In this case (iii) holds while (i) and (ii) do not.

(d) This function is linear.

(i) LHS:

Td(v + w) = Td

([
x1
y1

]
+

[
x2
y2

])
= Td

([
x1 + x2
y1 + y2

])
=

x1 + x2 + y1 + y2
x1 + x2 + y1 + y2
x1 + x2 + y1 + y2

 .
RHS:

Td(v)+Td(w) = Td

([
x1
y1

])
Td

([
x2
y2

])
=

x1 + y1
x1 + y1
x1 + y1

+

x2 + y2
x2 + y2
x2 + y2

 =

x1 + x2 + y1 + y2
x1 + x2 + y1 + y2
x1 + x2 + y1 + y2

 .
So the LHS=RHS.

(ii) LHS:

Td(λv) = Td

(
λ

[
x
y

])
= Td

([
λx
λy

])
=

λx+ λy
λx+ λy
λx+ λy

 .
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RHS:

λTd(v = λTd

([
x
y

])
= λ

x+ y
x+ y
x+ y

 =

λx+ λy
λx+ λy
λx+ λy

 .
So the LHS=RHS.

(iii) Take

Td(0) = Td

([
0
0

])
=

0
0
0

 .
So (iii) also holds.

Problem 2. Write down the matrix for the following linear transformation T : R3 → R3:

T

xy
z

 =

x+ y + z
2x

3y + z

 .
Solution 2. A linear transformation and left multiplication of a vector by a matrix are
analogous. What I’m saying here is to find a matrix

T =

a11 a12 a13
a21 a22 a23
a31 a32 a33


so that a11 a12 a13

a21 a22 a23
a31 a32 a33

xy
z

 =

x+ y + z
2x

3y + z

 .
We do the matrix multiplication on the left hand side and I’ll rewrite the right hand side
slightly to get a11x+ a12y + a13z

a21x+ a22y + a23z
a31x+ a32y + a33z

 =

1x+ 1y + 1z
2x+ 0y + 0z
0x+ 3y + 1z

 .
Notice this gives us the system of equations that allow us to solve for the aij. Namely,

a11x+ a12y + a13z = 1x+ 1y + 1z

a21x+ a22y + a23z = 2x+ 0y + 0z

a31x+ a32y + a33z = 0x+ 3y + 1z.

The coefficients infront of the x, y, and z must match on each line which leads us to

T =

1 1 1
2 0 0
0 3 1

 .
You can double check this by performing the matrix multiplication again.
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Problem 3. Compute the following:

(a)

A =
[
1 1 1

] 2
1
3

 .
(b)

B =

[
5 0 0
2 2 2

]3
2
1


(c)

C =

1 2 3 4
5 6 7 8
9 10 11 12




3 2
2 3
3 2
2 3


(d) Take

M =

[
10 15
20 10

]
and

N =

[
1 2
2 1

]
.

Find 3MN− 3NM.

Solution 3. We just multiply these out.

(a) We have a 1× 3 on a 3× 1. So we expect a 1× 1 output.

A =
[
1 · 2 + 1 · 1 + 1 · 3

]
=
[
6
]
.

(b) We have a 2× 3 on a 3× 1. So we expect a 2× 1 output.

B =

[
5 · 3 + 0 · 2 + 0 · 1
2 · 3 + 2 · 2 + 2 · 1

]
=

[
15
12

]
.

(c) We have a 3× 4 on a 4× 2. So we expect a 3× 2 output.

C =

 1 · 3 + 2 · 2 + 3 · 3 + 4 · 2 1 · 2 + 2 · 3 + 3 · 2 + 4 · 3
5 · 2 + 6 · 2 + 7 · 3 + 8 · 2 5 · 2 + 6 · 3 + 7 · 2 + 8 · 3

9 · 3 + 10 · 2 + 11 · 3 + 12 · 2 9 · 2 + 10 · 3 + 11 · 2 + 12 · 3

 =

 24 26
64 66
104 106

 .
(d) First, note that in general for two matrices A and B that AB 6= BA. So we cannot a

priori assume 3MN− 3NM = 0. Second, we can rewrite

3MN− 3NM = 3(MN−NM).
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(Aside: The quantity MN−NM is sometimes written [M,N] and is called the commu-
tator. This relationship is necessary to understand in quantum mechanics! )

We compute

MN =

[
10 15
20 10

] [
1 2
2 1

]
=

[
10 · 1 + 15 · 2 10 · 2 + 15 · 1
20 · 1 + 10 · 2 20 · 2 + 10 · 1

]
=

[
40 35
40 50

]
and

NM =

[
1 2
2 1

] [
10 15
20 10

]
=

[
1 · 10 + 2 · 20 1 · 15 + 2 · 10
2 · 10 + 1 · 20 2 · 15 + 1 · 10

]
=

[
50 35
40 40

]
.

Then we have

3(MN−NM) = 3 ·
([

40 35
40 50

]
−
[
50 35
40 40

])
= 3 ·

[
−10 0

0 30

]
=

[
−30 0

0 30

]
.

Problem 4. Compute the following determinants:

(a)

det(A) =

∣∣∣∣ −3 6
−3 6

∣∣∣∣
(b)

det(B) =

∣∣∣∣∣∣
1 2 3
4 5 6
7 8 9

∣∣∣∣∣∣
(c)

det(C) =

∣∣∣∣∣∣
λ 2 0
0 λ− 1 5
0 0 λ

∣∣∣∣∣∣
Solution 4. We just compute.

(a)
det(A) = (−3 · 6)− (6 · (−3)) = 0.

(b) Expanding across the top row, we have

det(B) = 1 ·
∣∣∣∣ 5 6

8 9

∣∣∣∣− 2

∣∣∣∣ 4 6
7 9

∣∣∣∣+ 3

∣∣∣∣ 4 5
7 8

∣∣∣∣
= (5 · 9− 6 · 8)− 2(4 · 9− 6 · 7) + 3(4 · 8− 5 · 7)

= −3− 2(−6) + 3(−3) = 0.

(c) Expanding across the left column, we have

det(C) = λ ·
∣∣∣∣ λ− 1 5

0 λ

∣∣∣∣− 0

∣∣∣∣ 2 0
0 λ

∣∣∣∣+ 0

∣∣∣∣ 2 0
λ− 1 5

∣∣∣∣
= λ((λ− 1) · λ− 5 · 0) = λ2(λ− 1).
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Problem 5. A linear transformation T : R3 → R3 is given by the matrix

T =

1 2 0
2 1 2
0 2 1

 .
(a) Compute how T transforms the standard basis elements for R3. That is, find

T

1
0
0

 , T

0
1
0

 , T

0
0
1

 .

(b) If we apply this linear transformation to the unit cube (that is, all points who have
(x, y, z) coordinates with 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, and 0 ≤ z ≤ 1), what will the volume
of the transformed cube be? (Hint: the determinant of this matrix T provides us this
information.)

Solution 5. (a) The moral of the story here is that we can understand a linear transforma-
tion entirely by how it transforms the standard basis vectors1

0
0

 0
1
0

 0
0
1

 .
Recall that a linear transformation T is given by left multiplying by the matrix T above.
So 1 2 0

2 1 2
0 2 1

1
0
0

 =

1 · 1 + 2 · 0 + 0 · 0
2 · 1 + 1 · 0 + 2 · 0
0 · 1 + 2 · 0 + 1 · 0

 =

1
2
0


1 2 0

2 1 2
0 2 1

0
1
0

 =

1 · 0 + 2 · 1 + 0 · 0
2 · 0 + 1 · 1 + 2 · 0
0 · 0 + 2 · 1 + 1 · 0

 =

2
1
2


1 2 0

2 1 2
0 2 1

0
0
1

 =

1 · 0 + 2 · 0 + 0 · 1
2 · 0 + 1 · 0 + 2 · 1
0 · 0 + 2 · 0 + 1 · 1

 =

0
2
1

 .
Notice that, for example,

T

1
0
0

 =

1
2
0


is the first column of the matrix T. We see an analogous result for the second and
third basis vectors. This may help you understand matrix multiplication and linear
transformations just a bit more.
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(b) We have that
det(T) = −7.

I did not show work here. The negative is relatively unimportant for this example since
we’re just trying to understand how volume is transformed by T . So it turns out in
this case, a cube of 1[m3] would be transformed into a parallelopiped with a volume of
7[m3]. The minus sign has to do with an “orientation.” Let us not worry about this right
now. The idea of how volume is transformed when we apply a transformation will be of
utmost importance when we begin integration in 3-dimensional space.
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