
MATH 255, Homework 1: Solutions
Due February 1st

New Reading: Read sections 16.5, 16.6, 17.1, 17.2, 17.3
Relevant Sections: 16.1, 16.2, 16.3, 16.5, 16.6, 16.10.

Problem 1. The triangle inequality states that for vectors a and b, we have ‖a‖ + ‖b‖ ≥
‖a+b‖. Find an example of a pair a,b where strict inequality holds. Find an example of a
pair c,d where equality holds. Draw a picture for both cases.

Solution 1. I will work with vectors in R2 for simplicity. However, this statement is true in
broad generality.

Take the following:

a =

[
1
1

]
b =

[
1
1

]
c =

[
1
0

]
d =

[
0
1

]
.

Then we can compute both sides of the inequality for the two cases.

• We have

‖a‖ =
√

12 + 12 =
√

2,

‖b‖ =
√

12 + 12 =
√

2,

‖a + b‖ =
√

22 + 22 =
√

8 = 2
√

2.

x

y

a = b

a + b

Then we have equality since

‖a‖︸︷︷︸
=
√
2

+ ‖b‖︸︷︷︸
=
√
2

= ‖a + b‖︸ ︷︷ ︸
=2
√
2

.

In fact, if we consider any two vectors that are pointed in the same direction (including
sign, so the angle between them is 0 and not π), then this equality holds.
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• We have

‖c‖ =
√

12 + 02 = 1,

‖d‖ =
√

02 + 12 = 1,

‖c + d‖ =
√

12 + 12 =
√

2.

x

y

a

b a + b

Then we have the inequality since

‖c‖︸︷︷︸
=1

+ ‖c‖︸︷︷︸
=1

> ‖c + d‖︸ ︷︷ ︸
=
√
2

.

There are many other options here. Another good one to consider would be

c =

[
1
0

]
d =

[
−1
0

]
.

Check what happens here for yourself.

Problem 2. Let a = (1, 3), and b = (5, 2) be vectors with initial point at the origin and
terminal points of A and B respectively. Find a vector that bisects the line segment AB and
compute its unit vector.

Solution 2. Let us first draw a picture of this situation:

x

y

a

b

v

c = a + 1
2
v
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Our goal is to find a unit vector u in the same direction as c we have in the illustration
above.

To get to the midpoint of the line segment between the points a and b we can walk along
a and halfway along the vector v drawn above to get to c. That is to say

c = a +
1

2
v.

We find v by taking the vector difference between b and a. So

v = b− a = (4,−1).

Of course, v really sits with its tail at the origin (0, 0), but we should feel free to move it to
the head of a as in the figure.

We compute the length of c

‖c‖ =
√

32 + 2.52 =
√

15.25.

To get the unit vector u pointing in the direction of c, we then take

u =
1

‖c‖
c =

(
3√

15.25
,

2.5√
15.25

)
.

Another way to interpret this is c is the average position of the vectors a and b as it lies
in the midpoint on the line between them. Using this, we can see

c =
1

2
a +

1

2
b = a +

1

2
v.

Both ways give the same answer, but have a bit of a different approach.

Problem 3. Suppose three masses m1 = 2, m2 = 3, m3 = 10 have respective position
vectors p1 = (1, 0, 4), p2 = (0, 3, 2), and p3 = (2, 2, 0). What position vector p4 should be
assigned to a fourth mass m4 = 2 so that the center of mass of the whole system is at the
origin?

Solution 3. It’s a good idea to think of a picture in your head. All of these masses are
positive (or zero) in each component. This should lead you to believe that you must have
to put this last mass, m4, in a place where each component is negative. In the 1D case, if
we put all the mass on one side of a see-saw, then we must have to put the last mass on the
other side in order for the see-saw to rest at equilibrium.

Algebraically, we will have an equation that tells us the x-component for p4, an equation
for the y-component, and z-component as well. The center of mass equation for our situation
reads:

Rcm =
1

m1 +m2 +m3 +m4

(m1p1 +m2p2 +m3p3 +m4︸ ︷︷ ︸
known information

p4).
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The only unknown here is p4. We want Rcm = 0, and we can plug in the known values to
get 0

0
0

 =
1

17

2

1
0
4

+ 3

0
3
2

+ 10

2
2
0

+ 2

xy
z

 .

We can multiply both sides by 17 and compute this linear combination above to find0
0
0

 =

22 + 2x
29 + 2y
14 + 2z

 .
This gives us an equation for x, y, and z, all of which we know how to solve. That is

0 = 22 + 2x

0 = 29 + 2y

0 = 14 + 2z.

Solving each gives x = −11, y = −29/2, and z = −7. So we have that

p4 =

 −11
−29/2
−7

 .
What if m4 had been much heavier? Say, m4 = 20? Think about the see-saw example.

Problem 4. Which two of the following vectors have the smallest difference in angle?

a = (1, 2, 3), b = (π, π, 1), c = (−1,−π, 3), d = (1,−π, 3).

Solution 4. With problems like this, we want to realize all the work we have to do and go
about it in the most efficient way. What tools do we need to use and which comparisons do
we need to make?

Our tool will be the dot product (both ways of computing this) and we compare the
following list:

• a with b,

• a with c,

• a with d,

• b with c,

• b with d,

• c with d.
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Our two ways of computing the dot product are given by

u · v = u1v1 + u2v2 + u3v3 = ‖u‖‖v‖ cos θ.

We can solve for θ here and use this formula later. We get

θ = arccos

(
u1v1 + u2v2 + u3v3

‖u‖‖v‖

)
.

Verify this algebra for yourself.
We also need the length of each vector in order to do this. So let’s go ahead and get

those.

‖a‖ =
√

12 + 23 + 32 =
√

14

‖b‖ =
√
π2 + π2 + 12 =

√
2π2 + 1

‖c‖ =
√

(−1)2 + (−π)2 + 33 =
√
π2 + 10

‖d‖ =
√

12 + (−π)2 + 32 =
√
π2 + 10.

We then use our formula and compute:

θab = arccos

(
(1 · π) + (2 · π) + (3 · 1)√

14 ·
√

2π2 + 1

)
≈ 0.7537 ≈ 43.18◦

θac = arccos

(
(1 · (−1)) + (2 · (−π)) + (3 · 3)√

14 ·
√
π2 + 10

)
≈ 1.4677 ≈ 84.09◦

θad = arccos

(
(1 · 1) + (2 · (−π)) + (3 · 3)√

14 ·
√
π2 + 10

)
≈ 1.3461 ≈ 77.12◦

θbc = arccos

(
(π · (−1)) + (π · (−π)) + (1 · 3)√

2π2 + 1 ·
√
π2 + 10

)
≈ 2.0865 ≈ 119.5◦

θbd = arccos

(
(π · 1) + (π · (−π)) + (1 · 3)√

2π2 + 1 ·
√
π2 + 10

)
≈ 1.7555 ≈ 100.6◦

θcd = arccos

(
((−1) · 1) + ((−π) · (−π)) + (3 · 3)√

π2 + 10 ·
√
π2 + 10

)
≈ 0.4525 ≈ 25.93◦.

It seems the largest was the angle θbc between the vectors b and c. Yes, this was a bit
tedious. It happens. I used WolframAlpha to compute all of this and it saved me quite some
time.

Problem 5. Let a = (−3, 7, 2) and b = (−1,−1,−5). Compute a × b and show that it is
orthogonal to both a and b.

Solution 5. From our notes, we know the cross product of vectors follows

a× b = (aybz − azby, azbx − axbz, axby − aybx).
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Using our specific vectors, we find

a× b = (7 · (−5)− 2 · (−1), 2 · (−1)− (−3) · (−5), (−3) · (−1)− 7 · (−1)) = (−33,−17, 10).

I verified this with WolframAlpha.
To see if this is orthogonal to both a and b we simply use the fact that v and u are

orthogonal if and only if
v · u = 0.

So we compute this

(a× b) · a = (−33) · (−3) + (−17) · 7 + 10 · 2 = 0

(a× b) · b = (−33) · (−1) + (−17) · (−1) + 10 · (−5) = 0.

Hence, a× b is orthogonal to both a and b.
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