
MATH 255, Homework 11: Solutions

Problem 1 and 2 are related.

Problem 1. Consider the following linear system

x′(t) = x− y
y′(t) = −x− y.

(a) Rewrite this as a matrix equation
v′ = Mv.

Here the vector v denotes the xy-position of a particle at time t.

(b) Plot the vector field v′.

(c) Describe what happens if your initial data is

i. (x0, y0) = (0, 0),

ii. (x0, y0) = (1, 1),

iii. (x0, y0) = (−1,−1).

Solution 1.

(a) We let

v =

[
x(t)
y(t)

]
and v′ =

[
x′(t)
y′(t)

]
.

So we want an equation [
x′

y′

]
=

[
M11 M12

M21 M22

] [
x
y

]
.

If we multiply the matrices on the right hand side, we have[
x′

y′

]
=

[
M11x+M12y
M21x+M22y

]
.

This gives us the system of equations

x′ = M11x+M12y

y′ = M21x+M22y.

We match these matrix coefficients with our given system and find

M11 = 1 M12 = −1

M21 = −1 M22 = −1,
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and we put

M =

[
1 −1
−1 −1

]
.

Finally, our matrix equation reads[
x′

y

]
=

[
1 −1
−1 −1

] [
x
y

]
.

(b) Here is a plot of the vector field

v′ =

[
x− y
−x− y

]
.

(c)

i. If the starting point is (x0, y0) = (0, 0) then we have

x′ = 0− 0 = 0

y′ = −0− 0 = 0,

so both x′ = y′ = 0. Thus, if we start at the origin, we stay at the origin.

ii. If we start at (x0, y0) = (1, 1) then we have

x′ = 1− 1 = 0

y′ = −1− 1 = −2
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so we have no initial movement in the x-direction and only negative movement in
the y-direction. However, it seems over time that the x-values grow and the y-values
continue to decrease.

iii. This point is similar the previous as we have x′ = 0 initially but y′ is positive instead
of negative. In this case we an see that we are carried in the negative x-direction
and the positive y-direction over time.

*Problem 2. With the same linear system as in 1, do the following.

(a) Compute the eigenvalues of the matrix M .

(b) Compute the eigenvectors of the matrix M .

(c) Write the general solution for this system.

(d) Find the particular solution corresponding to the initial data (x(0), y(0)) = (1, 1).

Solution 2.

(a) The eigenvalues are found by solving

det(M − λI) = 0.

So we have

det(M − λI) = 0∣∣∣∣[1− λ −1
−1 −1− λ

]∣∣∣∣ = 0

(1− λ)(−1− λ)− 1 = 0

−1 + λ− λ+ λ2 − 1 = 0

λ2 − 2 = 0

λ2 = 2

=⇒ λ = ±
√

2.

We’ll set λ1 =
√

2 and λ2 = −
√

2.

(b) Now, to find the eigenvectors, we want to find a vector e that solves

(M − λ)e = 0.

For λ1 =
√

2 We have, [
1−
√

2 −1

−1 −1−
√

2

] [
e1
e2

]
=

[
0
0

]
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We can make the augmented matrix, and solve by row reduction. So we have[
1−
√

2 −1 0

−1 −1−
√

2 0

]
Add R2 from R1−−−−−−−−−−−−→

[
−
√

2 −2−
√

2 0

−1 −1−
√

2 0

]
Multiply R2 by

√
2−−−−−−−−−−−−−−→

[
−
√

2 −2−
√

2 0

−
√

2 −2−
√

2 0

]
Subtract R1 from R2−−−−−−−−−−−−−−−→

[
−
√

2 −2−
√

2 0
0 0 0

]
.

This gives us the equation

−
√

2x+ (−2−
√

2)y = 0

−
√

2x = (2 +
√

2)y

x =

(
−2√

2
− 1

)
y

x = (−1−
√

2)y.

So choose y = 1 and we find that the eigenvector corresponding to λ1 is

e1 =

[
−1−

√
2

1

]
.

For λ2 = −
√

2 The work is very similar, and you find that the corresponding eigenvector
is

e2 =

[
−1 +

√
2

1

]
.

(c) The general solution is[
x(t)
y(t)

]
= c1e

√
2t

[
−1−

√
2

1

]
+ c2e

−
√
2t

[
−1 +

√
2

1

]
.

(d) We use the initial data so we know[
x(0)
y(0)

]
=

[
0
0

]
= c1e

√
2·0
[
−1−

√
2

1

]
+ c2e

−
√
2·0
[
−1 +

√
2

1

]
=

[
c1(−1−

√
2)

c1

]
+

[
c2(−1 +

√
2)

c2

]
.

This gives us the following system of equations

1 = c1(−1−
√

2) + c2(−1 +
√

2) (1)

1 = c1 + c2. (2)

Note that (2) gives us that c2 = 1− c1 and we plug this into (1) to find

1 = c1(−1−
√

2) + (1− c1)(−1 +
√

2)

1 = −c1 −
√

2c1 − 1 +
√

2 + c1 −
√

2c1

2−
√

2 = −2
√

2c1

=⇒ c1 =
1

2
− 1√

2
.
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Thus, c2 = 1
2

+ 1√
2
. So the particular solution is[

xp(t)
yp(t)

]
=

(
1

2
− 1√

2

)
e
√
2t

[
−1−

√
2

1

]
+

(
1

2
+

1√
2

)
e−
√
2t

[
−1 +

√
2

1

]

Problem 3. Solving the one dimensional Laplace equation is much like an ODE. However,
the data given looks a bit different. So consider the following set up.

Consider the Laplace equation

∆u(x) =
d2u

dx2
= 0

on the interval Ω = (0, 1) with boundary conditions u(0) = 0 and u(1) = 1.

(a) This equation is separable. To find u, take two antiderivatives of

d2u

dx2
= 0.

(b) To verify you did this correctly, take two derivatives of your function to see that you get
0.

(c) Your function should have two undetermined constants. Solve for these constants using
the boundary conditions provided.

Solution 3.

(a) We take an antiderivative ∫
d2u

dx2
dx =

∫
0dx

du

dx
= c1,

by the fundamental theorem of calculus. We can do this again and get∫
du

dx
dx =

∫
c1dx

u(x) = c1x+ c2.

(b) We check this by taking two derivatives

d

dx

d

dx
(c1 + x+ c2) =

d

dx
c1 = 0.

So this function does work.

5



(c) We know that
u(0) = 0 = c1(0) + c2

which means c2 = 0. Then we also have

u(1) = 1 = c1(1)

which means that c1 = 1. So we have

u(x) = x.

Problem 4. The methods for solving many PDEs are beyond the scope of this class, but we
can still see what solutions behave like and a bit of how to find these. What we’ll do below
are a few steps of the method of separation of variables (not to be confused with separable
ODE!)

Consider the heat equation in one dimension on the region Ω = (0, 1)

∂u

∂t
(x, t)− ∂2u

∂x2
(x, t) = 0

with boundary conditions u(0, t) = 0 and u(1, t) = 0, and initial condition u(x, 0) = sin(πx).

(a) Show that f(x) = sin(πx) is a solution to

f ′′(x) = −π2f(x)

with f(0) = 0 and f(1) = 0.

(b) Show that g(t) = e−π
2t is a solution to

g′(t) = −π2g(t)

with g(0) = 1.

(c) Show that u(x, t) = f(x)g(t) solves the heat equation with these boundary and initial
conditions.

Solution 4.

(a) We have

d2f

dx2
=

d

dx

d

dx
sin(πx)

= π
d

dx
cos(πx)

= −π2 sin(πx)

= −π2f(x).
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So we have the ODE is solved. Then we also check

f(0) = sin(π0) = 0

and
f(1) = sin(π) = 0

and so the boundary conditions are satisfied.

(b) We have

dg

dt
=

d

dt
e−π

2t = −π2e−π
2t = −π2g(t).

Then note that
g(0) = e−π

2·0 = 1.

So this solves the PDE and initial value.

(c) We have

∂

∂t
f(x)g(t)− ∂2

∂x2
f(x)g(t) = f(x)g′(t)− f ′′(x)g(t)

= −π2f(x)g(t) + π2f(x)g(t)

= 0.

So indeed this function u(x, t) does satisfy the PDE. Now we also check

u(0, t) = e−π
2·0 sin(0) = 0

and
u(1, 1) = e−π

2

sin(π) = 0,

so the boundary conditions are satisfied. Lastly, we have

u(x, 0) = e−π
2·0 sin(πx) = sin(πx),

so the initial conditions are satisfied.

Problem 5. With our solution from 4, we can analyze the behavior of the system. The
physical phenomenon that Problem 4 modelled was a thin rod (the segment (0, 1)) that had
an initial temperature distribution sin(πx), i.e. it was warmer in the middle and coldest on
the ends. The boundary conditions u(0) = 0 and u(1) = 0 can be thought of as attaching a
thermocouple at each end that holds the end temperature at 0 degrees.

(a) Plot the function on CalcPlot3D by plotting

z = e−π
2y sin(πx) = u(x, y),

where we just let the t variable be denoted by y to plot this function.
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(b) Can you explain what happens as time t moves forward based on your intuition, plot,
or by the equation we found in 4?

Solution 5. (a) Here is the plot.

(b) As t increases, the temperature starts to regularize in the rod. We can see that as t gets
very large, we expect the temperature in the whole rod to be 0. This is fairly intuitive. If
we old the ends of a rod at some temeprature, we do expect the temeprature to equalize
throughout the rod given enough time.

Using the solution equation, we can just see that e−π
2t gets smaller and smaller as t

increases.
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